Math 114–MPS, Winter 2016

Instructor: Cheryl Jaeger Balm

Rational Functions (Ch. 6):

- Using LCDs:
 - When you add or subtract rational expressions, use the LCD to find a common denominator.
 - When simplifying complex fractions, multiply the top and bottom by the LCD to get rid of all "embedded" fractions.
 - When solving rational equations, multiply the left and right sides by the LCD to get rid of all fractions.

1. Find the **domain** of the function $f(x) = \frac{7x+1}{x^2 - x - 2}$

2. Simplify the expression completely: $\frac{x^2 + 6x + 8}{2x^2 - 32}$

(Hint: First factor the numerator and denominator.)

3. Simplify the expression completely:
$$\frac{\frac{2}{x+2}}{\frac{1}{x+2} - \frac{2}{x}}$$

(*Hint: Multiply top and bottom the the common denominator of all "embedded" fractions.*)

റ

4. Simplify by dividing:
$$\frac{4x^4y^3 + 4x^3y^4 + 10xy^5}{2xy^3}$$

- 5. Multiply $\frac{2x^2 4x}{x^2 1} \cdot \frac{x^2 2x 3}{x^2 5x + 6}$ (*Hint: First factor and cancel, then multiply.*)
- 6. Divide $\frac{x^2 16}{2x^2 + 7x + 3} \div \frac{2x^2 5x 12}{4x^2 + 8x + 3}$
- 7. Subtract by first finding a common denominator: $\frac{x-7}{x^2+x-12} \frac{5x}{x^2+9x+20}$
- 8. Solve for x: $\frac{x+4}{x^2+5x} = \frac{-2}{x^2-25}$ Don't forget to check for extraneous solutions!

Exponents and Scientific notation (1.6, 1.7):

9. Multiply and simplify: $(-4x^{-5}y)(-2x^3y^{-4})^{-2}$

10. Simplify
$$\left(\frac{x^{-1}y^2}{x^5y^7}\right)^{-3}$$

- 11. Write 1.03×10^4 in decimal notation.
- 12. Write 0.00006007 in scientific notation.
- 13. Divide $\frac{1.1 \times 10^4}{4.4 \times 10^2}$. Answer in scientific notation.

Radicals and rational exponents (Ch. 7):

- 14. Find the **domain** of $f(x) = \sqrt{1-x}$
- 15. Simplify completely: $(x^{-1/3}y^{3/4})^{-1/2}$
- 16. Simplify completely: $\sqrt[3]{81x^6y^4}$
- 17. Add $3\sqrt{12x} + 3\sqrt{27x}$
- 18. Multiply and simplify: $(2\sqrt{2x^3})(-4\sqrt{8xy^7})$
- 19. Divide and simplify: $\frac{\sqrt[3]{80x^5}}{\sqrt[3]{2x}}$
- 20. Simplify: $\sqrt{x} \sqrt[5]{x}$
- 21. Rationalize the denominator: $\frac{x^2}{\sqrt{7y}}$
- 22. Rationalize the denominator: $\frac{1-\sqrt{7}}{\sqrt{5}+\sqrt{3}}$
- 23. Solve for $x: \sqrt{6x+7} 2 = x$
- 24. Solve for $x: \sqrt{x+5} 2 = \sqrt{x-3}$ Don't forget to check for extraneous solutions!

Inverses, Exponential Functions and Logarithms (Ch. 9):

- 25. Given f(x) = 2x 1 and $g(x) = x^2 + 1$, find $(f \circ g)(x)$ and $(g \circ f)(x)$.
- 26. Given $f(x) = \frac{2x+7}{3}$, find $f^{-1}(x)$.
- 27. According the U.S. Bureau of the Census, in 1990 there were 22.4 million residents of Hispanic origin living in the U.S. By 2005, the number had grown to 41.9 million.
 - (a) Find an **exponential growth model** $f(t) = A_0 e^{kt}$ that describes the U.S. Hispanic population in millions, where t represents the number of years after 1990. Round k to 2 decimal places.
 - (b) According to your model, in what year will the U.S. Hispanic population reach 80 million?
- 28. The half-life of Polonium-210 is 140 days. Find the value of k in the exponential decay model $f(t) = A_0 e^{kt}$ for Polonium-210. Round your answer to 3 decimal places.
- 29. Rewrite $7 = \log_3(x)$ as an exponent.
- 30. Rewrite $2^x = 30$ as a logarithm.
- 31. Expand $\log\left(\frac{\sqrt[4]{x}}{5y^2}\right)$ as much as possible.
- 32. Combine $2\ln(x) \frac{2}{3}\ln(x-5) \ln(2-x)$ into a single logarithm
- 33. Find the **domain** of the function $f(x) = \log_3(3x 4)$.
- 34. Solve for x and round your answer to 2 decimal places: $4^{x+1} = 16$
- 35. Solve for $x: 7 \cdot 5^{2x} = 134$
- 36. Solve for x: $\log(x) + \log(x 3) = 1$ Don't forget to check for extraneous solutions!
- 37. Solve for x: $\ln(x+2) \ln(4x+3) = \ln\left(\frac{1}{x}\right)$ Don't forget to check for extraneous solutions!

Compound Inequalities and Absolute Values (4.2, 4.3):

- 38. Solve and graph on a number line: $3x 5 \le -2$ or 10 2x < 4
- 39. Solve for x: 2|1 3x| 28 = 0
- 40. Solve and graph on a number line: 2|2x+3| > 10

Distances and Circles (10.1):

- 41. Find the distance between P = (1,3) and Q = (2,-3).
- 42. Write an equation for the circle with center (1, -2) and radius 4.
- 43. Graph the circle $(x-2)^2 + (x+2)^2 = 1$ by first finding the center and the radius.

Sequences and Series (Ch. 11):

44. Use the formula $a_n = a_1 + d(n-1)$ to find a formula for the **arithmetic sequence** -70, -75, -80, -85, ..., then find a_{10} .

(*Hint: First find the common difference d.*)

- 45. Use the formulas $a_n = a_1 + d(n-1)$ and $S_n = \frac{n}{2}(a_1 + a_n)$ to find the sum of the first 20 terms of the **arithmetic sequence** $-15, -9, -3, 3, 9, \ldots$ (*Hint: First find d and* a_{20} .)
- 46. Use the formula $a_n = a_1 \cdot r^{n-1}$ to find a formula for the **geometric sequence** 3, 12, 48, 192,

(Hint: First find the common ratio r.)

47. Use the formula $S_n = \frac{a_1(1-r^n)}{1-r}$ to find the sum of the first 8 terms of the **geometric** sequence 2, 6, 18, 54,