. Ch 3: Probability

A probability is the Iong range relative frequency
of an outcome.

| Example: Suppose we flip a coin several times.
- We are interested in how many times we get
heads. |
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Pmbability Terms
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Example: = = students in thls_class
C = students who own a cat .} » A
D = students who own a dog .~ ©A



{-alculating Probablhtles
Example Consider the experiment of rolling a
yellow and an orange die and recording the
faces showing. Consider the following events:

7 = rolling a sum of 7

& = rolling @ sum of 6> %, S, ey, (33,

D = rolling doubles (32,6,
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Conditionai Probability  P(A|B)
“probability of A given B”
2 oo, o A Lol \,\g43 e~ 2\%
v Ne Ov\"%\‘ Yorson Aot
% U\S\\\\ CB@._Q’\A(\A\'&\\.‘ \,\o\??e_,\

Conditional Probability Rule
- TS




| | Con
Example (HW #17 in textbook): <o
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ﬁndependence of Events

~ Two events are in dependent if the fact that

one has occurred does not affect the
probability @E‘" the other
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Test for Independence
A and B are independent if %of the
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Experiment: Roll a pair of dice.
02 =orange dieis a 2
D = doubles
Are 02 anc)’é I3 independent?
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Conditional Probability Rule
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" Review of Probability Rules

o P(Aor BY=P(A)+P(B)—P(AandB)
o P(4)=1- ~P(A)

Chot A -
. P(A|B)="U D)

e P(Aand B)=P(4|B)P(B)
e IfA and B are independent:

 P(4|B)=P(4) = P CB\AY: PLRY
2° P(Aand B)=P(A)P(B)

» If Aand B are mutually exclusive:

P(Aand B)=0



Example: Find the following given P(4)=0.25,
P(B)=0.45, and P(A| B)= 0.8,
o P(AandB) = PCALDY - T(B)
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¢ Are Aand B mutually exclusive? Why or
why not? No
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e Are Aand B independent? Why or why not?
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N Example:

. If P(A)=0.60, P(AorB)= 0.85 and
P(Aand B) = 0.05, find P(B).

P Aoc® - PO (B = POA and®N
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If P(E and F)=0.6 and P(E) = 0.8, what
is P(F | E)?
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. Suppose that E and F are two events and that
- P(Eand F)=0.24, P(E) = 0.4 and P(F) = 0.6.
Are E and F mdependent events? Why?
T LEMA &= piey-peey Y



Tree Diagrams
A tree diagram is a visual way of representing the
probabilities of experiments that are sequential in
nature

- Example: |
| have a sock drawer with 4 navy socks and 8 brown
socks. It is a dark winter morning. | draw 2 socks at
random from the drawer. |

Two ways to do this:
e with replacement
e without replacement
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With replacement |
What is the probability of drawmg
. two Brown socks? (4
BT

. mismatched socks? 22 ¥3% = La%\ |

.. a navy S@CK on the 2™ draw’? loraz o H5
- !L,]L..[ /44

. another navy sock if you already'drew a
navy sock on the 1% draw?
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Without replacement:

What is the probability of drawing:
- two Brown socks? s
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. mismatched socks? 2z +2*Z * “_‘
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. a navy sock on the 2™ draw?
P(-N or NN =12 +32 = 4y

navy sock on the 1 draw?
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