Ch 8: Confidence Intervals
Often, a desired population parameter is
unknown.

In that case, we conduct a survey or take a
sample to estimate the unknown parameter.

There are two ways we can do this:
e Point Estimate
e Confidence interval

Point Estimate - we approximate the unknown
parameter with a single value computed from
sample data.
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Parameter Point Estimé\jt\re\ NS
U pop. mean X sample mean
o pop. st. dev. Sx sample st. dev.
p pop proportion P’ sample proportion
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Confidence Intervals

A confidence interval (Cl) gives a range of
values to estimate the parameter, along with a

certain level of confidence that the parameter
lies within the range.

Form of the Confidence Interval:
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‘Math 10 Handout Chapter 8 Confidence Intervals

Suppose we are interested in the following question:
*  What is the mean number # of hours of sleep De Anza students got last night?

We take our class as a sample Suppose the sample average is 7.5 hours per night. Then, we say that
X =7.5. The value 7.5 is called a pomt estimate of 4,

o
Using the CLT, we know X ~N (#x,j—x—}
. n

’

Another way to give the mean estimate is in the form of a confidence interval. A confidence interval
has the from ( X — margin of error, X + margin or error ).

* Example: Suppose we want fo estimate the average number of Giants home games a fan
attends per season. A sample of 30 local fans is taken and the average number of games,
attended is calculated ffom the sample. We calculate that % =10 Suppose we know that the |
population standard deviation of games attended is G = 2, Construct a 95% confidence interval

for the true mean # number of games attended. o
n = 2_, o
s )
Conﬁdence leveI CL= O, As _ % \:2..
' =2k

Associated with the CL is something called the & -value. The & -value is the probability that our
confidence interval will net contain the true populatlon mean. Thus:

=1-CL
So: f = 0,65 | Thus, % = c.0zs
.3;6
0" as
G*raphwally, we have: cL=© " %
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Recall z-scores z— 5, M . Since X ~N(Hx, 7 J a bit of algebra (that We won't do) tells us

z-scores for X have the normal d1str1but10n waN(O 1).
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The confidence interval has the from (X — EBM, ¥ + EBM ) where EBM = %4 ° "J:
' 2

The value # ‘; is the upper % ~critical value for the standard normal distribution. (Huh?) In other

words, the area to the right of Zg is 2 . We find this by using iﬁvNorm (CL+Q,0,1) on our
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We are 95% confident that the tr2 popu"lation meanisbetween A 2% and 1 o xZ

In other words, we are 95% confident that the average number of Giants home games a fan attends per
%{_ season is between _ 4,23 and .xZ .

Here's another (slightly easier) way to calculate of this:

— g, . . e
Even though X ~N #x,T , to create the confidence interval, we will use the distribution
[ = |

— - O, e — o, .
X ~N{x, TJ (with X instead on X, since we don't know £, ). To find the 95% confidence interval,
n ’ , 4 .

‘ . o o
we need to find the values that correspond to the percentiles for > and CL+ 5

In this example, ¥ ~N(I0 , g ),CL= 025 ang T =_e.02%

So we use the calculator commands invNorm( 0.625, V& | (7o )and invNorm(SH ™, 1O, GO

fo gét the same confidence interval ( 4. 2%, 1@ A2 ) and the picture:

* Example: Suppose we are interested in finding the mean price of an HDTV that is currently on
the market. A random sample of 34 HDTYV prices is taken that gives a sample mean of
$1585.00. If it is known that the population standard deviation of HDTV prices is $390.00, find
the 95% confidence interval for the true mean price of an HDTV.,
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- How to Construct a Confidence Interval

I. Conf. Int. for Means
A. o known (pop. st. dev.)

We will use the distribution for averages:

XN [x, %ﬁ
Steps:

1. Write the distribution for the problem

2. Draw a graph e

3. Find the Confidence Interval using the ¢ 6\”“’
Calculator

4. Interpret your interval in terms of the

~ problem



Example: Statistics exam scores are normally
distributed with a population standard deviation
of 20. Suppose we do a random sample of 36
students’ exams and find thatthe average score
is 73. Find a 90% confidence interval for the
population mean exam score.
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Math 10 Handout Chapter § Student-t Distribution & Confidence Intervals for Proportions

Consider the previous problem:

Test scores for statistics classes are normally d15tr1buted with unknown population mean but

population standard deviation 3. A sample of 36 scores is taken that gives a sample mean of 68,
Find a 90% confidence interval for the true population mean of test scores.

. = ZIZ - —_—
To solve this problem, we used:  EB z \/E

If the population standard deviation O is not given, we will use the sample standard deviation s, but

will not use the Z% -score. Instead, we will use a -score from a different distribution called the

Student-t distribution. The Student-t distribution is denoted by T~ wheredf =n-—1,

3 Facts about the Student-t distribution:

1.
2.
3.

The graph of a Student-t distribution is similar to a normal curve.

Student-t tails have more probability under them because their spread is a little greater. -

The Student-t distribution can only be used if the underlying population distribution is close to
normal (or at least large and bell shaped). Also, we’ll only use the Student-t distribution if the
population mean and standard deviation are unknown.

EB a .\[‘

The Student t distribution was discovered by a beer maker named William Gosset who worked
for the Guinness brewery in Dublin, Ireland;

EXAMPLE

We ous€ 95‘%9 =0 e

Suppose we do a study on acupuncture to determine how effective it is in relieving pain. We
measure sensory rates for 15 subjects. The results are given below. Use the sample data to
construct a 95% confidence interval for the population mean sensory rate. Assume that the
distribution of sensory rates is normal.
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Example: From a stack of IEEE Spectrum
magazines, announcements for 84 upcoming ~=%"
engineering conferences were randomly picked.

The average length of the conferences was 3.94 X~ 34

days, with a standard deviation of 1.28 days.

Assume the underlying population is normal. s, =1%*

a. Define the Random Variables X and X, in
Words. x; le,%jr\»\ OQ’ \ C_GI\-CQX_QX\C,Q |

X = ava, \ei\g\* oF BU  canverences
b. Which distribution should you use for this
problem? Explain your choice.
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c. Construct a 95% confidence interval for the
population average length of engineering
conferences.
I. State the confidence interval.
ii. Sketch the graph.
lii. Calculate the error bound.
iv. Write a statement interpreting your
interval. |
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Sometimes we are not happy with the confidence
interval we obtain. We may want a smaller error
bound or a higher confidence level.

We have control over 2 things:
n sample size
CL confidence level

What happens if we change n or CL.?
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Summary
If n is increased, the error bound gets smaller

If CL is increased, the error bound gets larger

To Decrease the error bound:
¢ Increase n (i.e. take a larger sample)
or
e Decrease the confidence level



Ch 8.
Il._Confidence Intervals for Proportions

The underlying distribution is Binomial
—_—

X = # of successes out of n trials N B (s o)

_'/nK: P' random variable for proportions
M

To construct the confidence interval, use .
' : : /= 60—1"‘9 - ro?of

e. OP_ SosCe Q= [

New
q/’-:_ Swle fmfa(

e =
oillacq” PR

e

lX::. formdser oS socce eSS

P’: \B‘DQO"'HC’“ : OQ-—- guc,c_e,c_,%e.g




Example: | am interested in the proportion of De
Anza students who feel that the economic
outlook for California will improve in the next two

years.
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8.8 Practice: Confidence Intervals for Proportions’

8.8.1 Student Learning Outcomes

¢ The student will calculate confidence intervals for proportions.

8.8.2 Given

The Ice Chalet offers dozens of different beginning ice-skating classes. All of the class names are putintoa
bucket. The 5 PM., Monday night, ages 8 - 12, beginning ice-skating class was picked. In that class were 64
girls and 16 boys. Suppose that we are interested in the true proportion of girls, ages 8 - 12, in all beginning
ice-skating classes at the Ice Chalet. Assume that the children in the selected class is a random sample of
the population. :

8.8.3 Estimated Distribution

Exercise 8.8.1

(\9 '\(\ _}/\\.& c’\a$5

What is being counted? ~ores ok )

Exercise 8.8.2 ' ' _ A (Solution on p. 372.} " |

In words, define the Random Variable X. X = ~u T pRe \ A\ Lovk of 80D A

Exercise 8.8.3 ‘ Hoe AN\gles {Solution on p. 372.)

Calculate the following:

a x= b4

b. n= KO

“CP= M0

%0 -

Exercise 8.8.4 : (Solution on p, 372.)

State the estimated distribution of X, X ~

Exercise 8.8.5 : ‘ (Solutionon p.372) *. _ o\
- Define a new Random Variable P’. What is p’ estimating? av e,r_ox\\ PR~ a¥ A (__*_\c':e c\asseS

Exercise 8.8.6 {Selution on p. 372.) Qla.-s-s as

In words, define the Random Variable P’ , P’ = ‘?rb?o cXien of 3"\ cls Y

Exercise 8.8.7

State the estimated distribution of P’. P" ~ ﬂ.‘gf\ -z

pm——
8.8.4 Explaining the Confidence Interval

Construct a 92% Confidence Interval for the true proportion of girls in the age 8 - 12 bkginning ice-skating
classes at the Ice Chalet. ‘

Exercise 8.8.8 (Solution on p-372)
How much area is in both tails (combined)? & = — & 42z-0.20%8

Exercise 8.8.9 (Solution on p. 372.)
How much areaisin each tail? § = O, & of

Exercise 8.8.10 ' {Solution on p, 372.)

Calculate the following:

#This content is available online at <htip:/ /cnx.org/content/m16968/1.13/>.

Available for free at Connexions <http:/ /enx.org/content/col10522/1.40>



350 | _ CHAPTER 8. CONFIDENCE INTERVALS

a. lower limit= @ a1
b. upperlimit= Q. %%
¢. error bound =

o0 2
Exercise 8.8.11 {(Solution on p. 372.)
The 92% Confidence Interval is: ‘ ) 2\
Exercise 8.8.12 ) - 'Pro?%\ " . L ( a, :"'Z— b} 0%

Fill in the blanks on the graph with the areas, upper and lower limits of the Confidence Interval, and
' the sample proportion.
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Figure 8.4

Exercise 8.8.13
In one complete sentence, explain what the interval means.

8.8.5 Discussion Questions

Exercise 8.8.14 |
Using the same p’ and level of confidence, suppose that n were increased to 100. Would the error
bound become larger or smaller? How do you know?

Exercise 8.8.15

Using the same p’ and n = 80, how would the error bound change if the confidence level were
increased to 98%7 Why?

Exercise 8.8.16 _ .

If you decreased the allowable error bound, why would the minimum sample size increase (keep-
ing the same level of confidence)?

Available for free at Connexions <http://cnx.org/content/ col10522,/1.40>



Calculating the Sample Size n

An organization that does a survey usually has in mind
what confidence level and error bound they would like to
use. They then do a survey based on those parameters,
but they need to determine the sample size to use.

To do this we need to understand how the Error Bound is
calculated. -

In general, the error bound is calculated using the
following general formula:

’
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We need to solve this equation for n:




Example: The Field Corporation wants to determine the
percent of California voters who believe that the governor
is doing a good job. How many voters should they survey
in order to be 95% confident that the estimated sample
proportion is within 3% of the true population proportion?
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Example: Calculating Survey Sample Size n

Insurance companies are interested in knowing the
population percent of drivers who always buckle up before
riding in a car.

1. When designing a study to determine this population
proportion, what is the minimum number you would
need to survey to be 95% confident that the
population proportion is estimated to within 0.037

A_\, \-G_a-%jr \oL&® Te"’?\e

2. If it was later determined that it was important to be
more than 95% confident but have the same error
bound and a new survey was commissioned, how
would that affect the minimum number you would
need to survey? Why?



3. Suppose you wanted to be 99% confident with the
same error bound of 0.037 What would be the
minimum number you would need to survey this time?

S L=0.89 (7.5FY (0.5
U : ' zZ ———
A =) -0A9 n (0.0

0.0l
40005
| | SN e (caa+0.,005 o 1N
"-1
Zooes T i Norme (0.395,0,1N\ = 2,530

4. Suppose you were OK with the 95% confldence
level, but you wanted to decrease the error bound fo
0.01. What would be the mlnlmum number you would
need to survey in this case? |
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