## Math 42 Spring 2016Exam 2 Review Sheet

Instructor: Cheryl Jaeger Balm

Sections covered: 4.7, 4.8, 5.1-5.3

These are *sample* topics and problems to help you study for Exam 2. This list is *not* meant to be exhaustive.

- 1. Know the **inverse trig functions**  $\sin^{-1}\theta$ ,  $\cos^{-1}\theta$  and  $\tan^{-1}\theta$ , including the domain and range of each.
  - Find  $\tan(\tan^{-1}(7))$
  - Find  $\cos^{-1}\left(\cos\left(-\frac{3\pi}{4}\right)\right)$
  - Find  $\sin(\cos^{-1}(0))$
  - Find  $\cot(\sin^{-1}(2))$
  - Find  $\sin^{-1}\left(\cos\left(\frac{11\pi}{4}\right)\right)$
- 2. Know how to **solve right triangles** 
  - Solve the triangle below by finding a, B and c. Round your answers to two decimal places.



- 3. Know all basic **trig identities**, including those coming from the Pythagorean theorem, reciprocals, quotients, cofunctions and even/odd functions and know how to use these identities.
- 4. Know how to **simplify** trig equations.
  - Simplify  $\sin(x)\cot(-x)$
- 5. Know how to **factor** trig equations.
  - Factor  $\csc^2 x \cot x 3$

- 6. Know how to **verify** trig equations. Choose the most complicated side of the equation and simplify/manipulate it to look like the other side using algebraic techniques.
  - Verify  $\sec^2\left(\frac{\pi}{2} x\right) 1 = \cot^2(x)$ .
- 7. Know how to **solve** trig equations by finding the *solution set* on the interval  $[0, 2\pi)$  and by finding the *general solution*.
  - Find all solutions to  $\cos(9\theta) = \frac{1}{2}$  on  $[0, 2\pi)$ .
  - Find the general solution to  $7\cos\theta = -3$ .

## 8. Simple harmonic motion

- A weight bounces up and down on the end of a spring so that it's movement is modeled by simple harmonic motion. The distance from its lowest point to its highest point is 3 feet and it returns to its highest point every 10 seconds. Write an equation that describes the motion of the weight if it is at its highest point at t = 0. Find the period, amplitude and frequency of your model.
- A weight bounces up and down on the end of a spring and its movement is modeled by  $y = -\frac{1}{2}\cos(10t)$ . Find the period and the frequency of the oscillation of the weight.