ANSWERS TO ODD NUMBERED HW PROBLEMS AND ALL REVIEW PROBLEMS CH II GAME THEORY

1101 Strictly Determined Games

- 1). a. The game is strictly determined. Optimal strategy for the row player is to always play row 1 and never row 2. In other words, his strategy is $\begin{bmatrix} 1 & 0 \end{bmatrix}$. The optimal strategy for the column player is to always to play column 1 and never to play column 2. We write it as $\begin{bmatrix} 1 & 0 \end{bmatrix}$. When both players play their optimal strategy, the value of the game is 1.
 - c. The game has no saddle point, therefore, it is not strictly determined.
 - e. The game is strictly determined. The optimal strategy for the row player is to always play row 4, and never play any other row. We write his strategy as $\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$. The column player's strategy is $\begin{bmatrix} 0 & 1 & 1 & 1 \end{bmatrix}$. The value of the game is 2.

3). a.
$$\begin{bmatrix} .05 & .10 \\ -.08 & -.12 \end{bmatrix}$$

b. The optimal strategy for the mayor is $\begin{bmatrix} 1 & 0 \end{bmatrix}$ and for his opponenent is $\begin{bmatrix} 1 & 0 \end{bmatrix}$. In other words, both candidates should oppose abortion rights.

11.2 Non-Strictly Determined Games

- 1). a. The optimal strategy for the row player is $\begin{bmatrix} 1/2 & 1/2 \end{bmatrix}$. The optimal strategy for the column player is $\begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}$. The value of the game 0.
 - c. Optimal strategy for the row player is $\begin{bmatrix} 2/7 & 5/7 \end{bmatrix}$. The optimal strategy for the column player is $\begin{bmatrix} 6/7 \\ 1/7 \end{bmatrix}$. The value of the game is 16/7.

3). a.
$$\begin{bmatrix} 2 & -3 \\ -3 & 4 \end{bmatrix}$$

b. Optimal strategy for the row player is $\begin{bmatrix} 7/12 & 5/12 \end{bmatrix}$ The optimal strategy for the column player is $\begin{bmatrix} 7/12 \\ 5/12 \end{bmatrix}$. The value of the game is -1/12.

11.3 Reduction by Dominance

1).
$$\begin{bmatrix} 2 & -1 \\ 0 & 3 \end{bmatrix}$$
, R = $\begin{bmatrix} 1/2 & 1/2 & 0 \end{bmatrix}$, C = $\begin{bmatrix} 2/3 \\ 1/3 \end{bmatrix}$, The value = 1

3).
$$\begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}$$
, $R = \begin{bmatrix} 2/3 & 1/3 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 2/3 \\ 0 \\ 1/3 \end{bmatrix}$, The value = 0

5).
$$\begin{bmatrix} 0 & -4 \\ -2 & 4 \end{bmatrix}$$
, R = $\begin{bmatrix} .6 & 0 & .4 & 0 \end{bmatrix}$, C = $\begin{bmatrix} 0 \\ .8 \\ .2 \\ 0 \end{bmatrix}$, The value = -0.8

7).
$$\begin{bmatrix} 2 & -8 \\ 1 & 5 \end{bmatrix}$$
, $R = \begin{bmatrix} 0 & 2/7 & 5/7 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 0 \\ 0 \\ 13/14 \\ 1/14 \end{bmatrix}$, The value = 9/7

11.4 Chapter Review

1). a.
$$R = \begin{bmatrix} 0 & 1 \end{bmatrix}$$
, $C = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$, value = 3 b. $R = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

c.
$$R = [0 \ 1]$$
, $C = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, value= 3 d. $R = [0 \ 0 \ 1 \ 0]$, $C = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $v = 3$

2). a.
$$\begin{bmatrix} -5 & 10 \\ 5 & 10 \end{bmatrix}$$
 b. $R = \begin{bmatrix} 0 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, value = 5 cents

3). a.
$$\begin{bmatrix} 5 & 30 \\ -5 & 0 \end{bmatrix}$$
 b. $R = \begin{bmatrix} 1 & 0 \end{bmatrix}$ $C = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, value = 5%

4). a.
$$\begin{bmatrix} .14 & .08 & .11 \\ .12 & .11 & .11 \\ .06 & .09 & .10 \end{bmatrix}$$
 b. $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, or $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, value=.11

5). a.
$$\begin{bmatrix} -.02 & .03 \\ .01 & -.01 \end{bmatrix}$$
 b. stocks = 2/7, CD's = 5/7

6). a.
$$\begin{bmatrix} 1/2 & 1/2 \end{bmatrix}$$
, $\begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}$, value = 0 b. $\begin{bmatrix} 5/9 & 4/9 \end{bmatrix}$, $\begin{bmatrix} 2/9 \\ 7/9 \end{bmatrix}$, value = 10/9 c. $\begin{bmatrix} 5/7 & 2/7 \end{bmatrix}$, $\begin{bmatrix} 6/7 \\ 1/7 \end{bmatrix}$, value = 23/7 d. $\begin{bmatrix} 1/2 & 1/2 \end{bmatrix}$, $\begin{bmatrix} 4/7 \\ 3/7 \end{bmatrix}$, value = 1

7). 19/8; 14/9 8). \$11,000 9). [
$$1/2$$
 $1/2$] , $\begin{bmatrix} 2/3 \\ 1/3 \end{bmatrix}$, $v = 0$

10).
$$Pass = 9/25$$
, $Run = 16/25$ 11). [$10/19$ $9/19$], $payoff = 9.58$ fish

12).
$$\begin{bmatrix} 1 & 0 \end{bmatrix}$$
, payoff = 2 points

11.4 CONTINUED

13). a.
$$\begin{bmatrix} -3 & 3 \\ 2 & -1 \end{bmatrix}$$
, $\begin{bmatrix} 0 & 1/3 & 2/3 \end{bmatrix}$, $\begin{bmatrix} 4/9 \\ 0 \\ 5/9 \end{bmatrix}$, value = 1/3

b. $\begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$, $\begin{bmatrix} 0 & 1/4 & 3/4 & 0 \end{bmatrix}$, $\begin{bmatrix} 1/2 \\ 1/2 \\ 0 \end{bmatrix}$, value = 5/2

c. $\begin{bmatrix} 4 & 3 \\ -1 & 4 \end{bmatrix}$, $\begin{bmatrix} 5/6 & 0 & 1/6 & 0 \end{bmatrix}$, $\begin{bmatrix} 1/6 \\ 5/6 \\ 0 \\ 0 \end{bmatrix}$, value = 19/6

d. $\begin{bmatrix} 2 & 1 \\ -2 & 1 \end{bmatrix}$, $\begin{bmatrix} 3/4 & 1/4 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, value = 1

e.
$$\begin{bmatrix} 0 & 3 \\ 4 & -7 \end{bmatrix}$$
, $\begin{bmatrix} 11/14 & 0 & 0 & 3/14 \end{bmatrix}$, $\begin{bmatrix} 10/14 \\ 4/14 \\ 0 \\ 0 \end{bmatrix}$, value = 6/7

f.
$$\begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$$
, $\begin{bmatrix} 1/2 & 1/2 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1/2 \\ 1/2 \\ 0 \end{bmatrix}$, value = 1