Evaluate the determinant of the given matrix by cofactor expansion along the row/column.

1. $\mathbf{A}=\left[\begin{array}{lll}3 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$
a. along the first row.
b. Along the second column
2. Use Row Echelon Form to find the determinant of a the given matrix

$$
\mathbf{B}=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 1 \\
2 & 1 & 0
\end{array}\right]
$$

3. Find the Adjoint of matrix \mathbf{B} in the previous problem.
4. Use Cramer's Rule to solve the system of equations then find the number of Multiplication additions required to find the solution.
$\left\{\begin{array}{c}x+2 y+2 z=3 \\ 2 x+y+z=3 \\ x-y+z=0\end{array}\right.$
5. Use the Adjoint of the associative matrix of the given system below to find the inverse then use it to solve the system.

$$
\begin{aligned}
& x-y+z=3 \\
& 2 x-y+z=5 \\
& 3 x-2 y+z=8
\end{aligned}
$$

