Name

Instructions: Give complete solutions to the following problems be sure to provide all the necessary steps to support your answers.

1. Let $\mathrm{A}=\mathrm{PDP}^{-1}$, and compute A^{5}

$$
\mathbf{A}=\left[\begin{array}{ccc}
4 & 0 & 1 \\
-2 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]
$$

2. Which of the following matrices is diagonalizable. Prove your answer

$$
\mathbf{A}=\left[\begin{array}{ll}
2 & 0 \\
1 & 2
\end{array}\right], \mathbf{B}=\left[\begin{array}{cc}
2 & -2 \\
2 & 2
\end{array}\right], \mathbf{C}=\left[\begin{array}{cc}
2 & -3 \\
1 & -1
\end{array}\right], \mathbf{D}=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 1 & 2
\end{array}\right]
$$

2. Find a matric P that diagonalizes \mathbf{A}, and compute $\mathbf{P}^{\mathbf{- 1}} \mathbf{A P}$.

$$
\mathbf{A}=\left[\begin{array}{ccc}
2 & 2 & -1 \\
1 & 3 & -1 \\
-1 & -2 & 2
\end{array}\right], \lambda=1,5
$$

3. Compute A^{K}.

$$
\mathbf{A}=\left[\begin{array}{ccc}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right], k=5
$$

4. Consider the Matrix A

$$
A=\left[\begin{array}{cc}
1 & 2 \\
2 & -2
\end{array}\right]
$$

a. Find a Basis for the Eigenspace of A, Call it $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}\right\}$
b. Normalize the vectors in the Basis of the Eigen space of A. Call it $\left\{q_{1}, q_{2}\right\}$
c. Compute $\lambda_{1} q_{1} q_{1}^{T}+\lambda_{2} q_{2} q_{2}^{T}$
d. Compare the answer to c with the Matrix A.

