Instructions: Write complete solutions to the following problems in the space provided. Besure to supply all the necessary steps that lead to your answers

1. Let $f(x, y)=4-x^{2}-y^{2}$, Find
a. $\quad \frac{\partial f}{\partial x}(2,0) \quad$ and interpret the partial derivative as a slope.
b. $\quad \frac{\partial f}{\partial y}(2,0) \quad$ and interpret the partial derivative as a slope.
2. Let $f(x, y)=\sqrt{2-x^{2}-y^{2}}$, Find
a. $\frac{\partial f}{\partial x}=$
b. $\frac{\partial f}{\partial y}$
c. $\frac{\partial f}{\partial y \partial x}$
d. $\frac{\partial f}{\partial x \partial y}$
3. Let $w(x, y, z)=\ln \left(2 x-y+z^{2}\right)$, Find
a. $\frac{\partial w}{\partial x}$
b. $\frac{\partial w}{\partial y}$
c. $\frac{\partial w}{\partial z}$
d. $\frac{\partial w}{\partial x \partial z}$
4. The table below shows wind chill (how cold it "feels" outside) as a function of temperature t (degree Fahrenheit) and wind speed $s(m p h)$. We can think of this function as $C(\mathrm{~s}, \mathrm{t})$.

Estimate the partial derivatives $\frac{\partial C}{\partial \hbar}(20,20)$, and $\frac{\partial C}{\partial s}(20,20)$ using forward difference, backward difference and forwar甲 \AA backward differeffe and interpret each derivative.

s / t	-10	0	10	20	30
0	-10	0	10	20	30
5	-15	-5	6	16	27
10	-33	-24	-9	4	16
15	-45	-32	-18	-5	9
20	-53	-39	-25	-10	4
25	-59	-44	-29	-15	0
30	-63	-48	-33	-18	-2

Smith and Minton.

