\qquad

Test Instructions:

Write complete solutions to the following problems. Be sure to provide all the necessary steps to support your answers. . Box All Answers.

1. Find an equation of the tangent plane and the normal line to the given surface at the specified point.

$$
z=e^{x^{2}-y^{2}}, \text { at }(1,-1,1)
$$

2. A contour map is given for a function f.
a. Use it to estimate $f_{x}(2,1)$, and $f_{y}(2,1)$

b. Use Linear approximation to estimate the value of f at $(2.2,1.3)$
\qquad
3. The dimensions of a closed rectangular box are measured x, y and z as $100 \mathrm{~cm}, 70 \mathrm{~cm}$, and 30 cm , respectively, with a possible error of 0.2 cm in each dimension. The surface area and the volume of the box is given by the equations $S(x, y, z)=2 x y+2 x z+2 y z, V(x, y, z)=x y z$
a. Find the linear approximation of S at the point $(96,69,29)$.
b. Suppose the box has been measured with a ruler that has one centimeter gradation, find the actual maximum error in measuring the surface of the box.
c. Find $L(101,71,31)-L(100,70,30)$
d. Use differentials to estimate the error in the measurement of the surface area of the box.
e. Compare the answers of parts c to d and the d to b . What do you conclude?
f. A coat of paint of thickness 0.0002 cm is applied to the exterior surface of the box. Use differentials to estimate the amount of the paint needed.
