Instructions: Write complete legible solutions to the following problems in the space provided. Be sure to supply all the necessary steps that lead to your answers

1. Find the Jacobian of the transformation Ans_____ $x = uv, y = \frac{u}{v}$

2. Find the Jacobian of the transformation $x = v + w^2$, $y = w + u^2$, $z = u + v^2$

3. Find the image of the set under the given transformation. Ans ______ S is the square bounded by u = 0, u = 1, v = 0, v = 1

$$x = v, \ y = \frac{u}{1 + v^2}$$

Ans

A region in the -plane is given. Find equations for a Ans transformation that maps a rectangular region in the -plane onto , where the sides of are parallel to the - and - axes.
R is a parallelogram wit vertices (0,0), (4,3), (2,4), (-2,1)

5. Use the given transformation to evaluate the integral Ans_ $\iint_{R} (4x + 8y) dA$, where R is a parallelogram with vertices (-1,3), (1,-3), (3,-1), (1,5) $x = \frac{1}{4}(u+v), y = \frac{1}{4}(v-3u)$