Instructions: Write complete legible solutions to the following problems in the space provided. Be sure to supply all the necessary steps that lead to your answers.

1. Find a parametric representation to the given surfaces
a. The equation of the plane that passes through $p(1,1,-1)$ and contains the vectors $\mathbf{u}=2 \mathbf{i}+\mathbf{j}-\mathbf{k}$, and $\mathbf{v}=\mathbf{i}-\mathbf{j}+2 \mathbf{k}$
b. $z=\sqrt{x^{2}+4 y^{2}}$
c. The part of the sphere $x^{2}+y^{2}+z^{2}=1$ that lies below $z=\sqrt{x^{2}+y^{2}}$
d. The part of the plane $z=x+3$ that lies inside the cylinder $x^{2}+y^{2}=1$
2. Find an equation of the tangent plane to the given parametric surface at the specified point.
$x=u^{2}+1, y=v^{3}+1, z=u+v, p(5,2,3)$
3. Find the surface area of the part of the paraboloid $y=x^{2}+z^{2}$ that lies inside the cylinder

$$
x^{2}+z^{2}=9
$$

Find the surface area of the part of the sphere $4=x^{2}+y^{2}+(z-2)^{2}$ that lies inside the cylinder

$$
x^{2}+y^{2}=1
$$

