Instructions: Write complete legible solutions to the following problems in the space provided. Be sure to supply all the necessary steps that lead to your answers.

1. Evaluate the surface integral $\iint y d s$, where S is the helicoid with vector equation $\mathbf{r}(u, v)=\langle u \cos v, u \sin v, v\rangle, 0 \leq u \leq 8,0 \leq v \leq \pi$.
2. Evaluate the surface integral $\iint_{S} x^{2} y z d S$, where S is the part of the plane $z=1+2 x+3 y$, that lies above the rectangle $0 \leq x \leq 6,0 \leq y \leq 2$.
3. Evaluate the surface integral

$$
\begin{aligned}
& \iint_{C} x z d S, \text { where } S \text { is the boundary of the region enclosed by the cylinder } \\
& y^{2}+z^{2}=9 \text { and the planes } x=0, \text { and } x+y=5
\end{aligned}
$$

4. Evaluate the surface integral $\iint \mathbf{F} \bullet d \mathbf{S}$ for the given vector field \mathbf{F} and the oriented surface \mathbf{S}. In other words, find ${ }^{\text {Sthe }}$ flux of \mathbf{F} across \mathbf{S}.
$F(x, y, z)=x z \mathbf{i}+x \mathbf{j}+y \mathbf{k}$, and \mathbf{S} is the hemisphere $x^{2}+y^{2}+z^{2}=25, y \geq 0$ oriented in the direction of the positive y-axis.
