Instructions: Write complete legible solutions to the following problems in the space provided. Be sure to supply all the necessary steps that lead to your answers.

1. Evaluate the surface integral $\iint y ds$, where S is the helicoid with vector equation $\mathbf{r}(u, v) = \langle u \cos v, u \sin v, v \rangle$, $0 \le u \le 8$, $0 \le v \le \pi$.

2. Evaluate the surface integral $\iint_{S} x^2 yz dS$, where S is the part of the plane z = 1 + 2x + 3y, that lies above the rectangle $0 \le x \le 6$, $0 \le y \le 2$.

3. Evaluate the surface integral

 $\iint_{S} xz dS$, where S is the boundary of the region enclosed by the cylinder $y^2 + z^2 = 9$ and the planes x = 0, and x + y = 5

4. Evaluate the surface integral $\iint \mathbf{F} \cdot d\mathbf{S}$ for the given vector field \mathbf{F} and the oriented surface \mathbf{S} . In other words, find^s the flux of \mathbf{F} across \mathbf{S} . $F(x, y, z) = xz\mathbf{i} + x\mathbf{j} + y\mathbf{k}$, and \mathbf{S} is the hemisphere $x^2 + y^2 + z^2 = 25$, $y \ge 0$ oriented in the direction of the positive y-axis.