1. Find the limit if it exists, or show it does not exist

$$\lim_{(x,y)\to(0,0)}\frac{2x^{2}y}{x^{4}+y^{2}}$$

2. Given $f(x, y) = x^2 + y^2$, $x = \sin t$, $y = \cos t$

Find
$$\frac{dz}{dt} =$$

- 3. Given $f(x, y) = x^2 + 4y^2$ Find $\nabla f(1, \sqrt{3}/2)$
- 4. Find the equation of the normal line to the surface $z = xy^2$, at the point (1, 2, 4)
- 5. Find the equation of the tangent plane to the surface $z = xy^2$, at the point (1, 2, 4)
- 6. Find the x coordinate of the center of mass of the triangular lamina in the first quadrant bounded by the x an y axes and the line y=3-x, if the density function is $\rho(x, y) = 3x + y$
- 7. Suppose that the a business model has profit function P(x, y, z) = 3x + 6y + 6z, and a manufacturing constraint $2x^2 + y^2 + 4z^2 \le 8800$. Maximize the profit.
- 8. Find the minimum value of the function $f(x, y) = 2x^2 + 3y^2$
- 9. Find the shortest distance from the origin to the surface $z^2 = 2xy + 2$
- 10. Find the minimum value of $f(x, y) = 2x^2 + y^2$, subject to the constraint xy = 2.
- 11. Find the work done by the force field $\mathbf{F}(\mathbf{x}, \mathbf{y}) = \langle -x^2, xy \rangle$ on a particle that moves once around the circle $x^2 + y^2 = 4$ counterclockwise.
- 12. Show that $\int 2xy^2 dx + 2x^2 y dy$ is independent of the path, then evaluate the integral. Where C is the path from (0,0) to (2,-1)

13. Use Green's theorem to evaluate the line integral along the given path.

$$\int_{C} x^2 y^2 dx + 4xy^3 dy$$
 C is the vertices of the triangle (0,0), (1,3), (0,3).

14. Determine if the vector field is conservative. If it is conservative, find a function f such that $\mathbf{F} = \nabla f$.

a)
$$\mathbf{F}(\mathbf{x}, \mathbf{y}) = \langle yz, xz, xy \rangle$$

b) $\mathbf{F}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \langle 3xy, x^2 + 2y, y^2 \rangle$

15. Evaluate

$$\int_{c} y dx + 2xy dy$$
, where C is the curve is the line from (1,1) to (5,3).

16. Evaluate
$$\int \vec{F} \cdot d\vec{r}$$
 where $\vec{F}(x, y) = \langle xe^{x^2} - 2, \sin y \rangle$
and C is the portion of the parabola $y = x^2$, from (-2,4) to (2,4)

Evaluate the surface integral
$$\iint_{S} zdS$$
, where S is the part of the cylinder
17.
 $z = \sqrt{1 - x^2}$ that lies above the square with verices $(-1, 0), (-1, 1), (1, 1), (1, 0)$.
Let $\mathbf{F}(x, y, z) = x\mathbf{i} - y\mathbf{j} + z\mathbf{k}$. and let ∂Q be th boundary surface of
18. the solid $Q = \{(x, y, z) | x^2 + y^2 + z^2 \le 1\}$, evaluate the surface integral
 $\iint_{\partial Q} \mathbf{F} \cdot \mathbf{n} ds$
Evaluate the flux integral $\iint_{S} (x\mathbf{i} - y\mathbf{j} + 3z\mathbf{k}) \cdot \mathbf{n} dS$ over the boundary of
19. the ball $x^2 + y^2 + z^2 \le 4$

Use the change of variable u = 2x - y, v = x + y to evaluate $\iint_{R} (x - 3y) dA$, where R is the region bounded 2x - y = 1, 2x - y = 3, x + y = 1, x + y = 2.