1. Determine the value(s) of h such that the matrix is the augmented matrix of a consistent linear system.
$\left[\begin{array}{lll}2 & 3 & h \\ 4 & 6 & 7\end{array}\right]$
2. Choose h and k such that the system has (a) no solution, (b) a unique solution, and (c) many solutions. Give separate answers for each part.

$$
\begin{aligned}
x_{1}+h x_{2} & =2 \\
4 x_{1}+8 x_{2} & =k
\end{aligned}
$$

3. Assume the plate shown in the figure represents a cross section of a metal beam, with negligible heat flow in the direction perpendicular to the plate. Let $\mathrm{T}_{1}, \ldots, \mathrm{~T}_{4}$ denote the temperatures at the four interior nodes of the mesh in the figure. The temperature at a node is approximately equal to the average of the four nearest nodes-to the left, above, to the right, and below.

$$
T_{1}=\left(10+20+T_{2}+T_{4}\right) / 4, \quad \text { or } \quad 4 T_{1}-T_{2}-T_{4}=30
$$

a. Write a system of four equations whose solution gives estimates for the temperatures $\mathrm{T}_{1}, \ldots, \mathrm{~T}_{4}$
b. Find the temperature at the interior points of the plate.

4. Find the interpolating polynomial that contains the given points.

Polynomial: $p(t)=a_{0}+a_{1} t+a_{2} t^{2}$, points: $(1,12),(2,15)$, and $(3,16)$.

