1. Use the accompanying figure to write each vectors \mathbf{x} , \mathbf{y} , \mathbf{c} and \mathbf{w} as a linear combination of \mathbf{u} and \mathbf{v} . Is every vector in \mathbf{R}^2 a linear combination of \mathbf{u} and \mathbf{v} ?

2. Let
$$A = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 3 & -2 \\ -2 & 6 & 3 \end{bmatrix}$$
, and $b = \begin{bmatrix} 4 \\ 1 \\ -4 \end{bmatrix}$

Denote the columns of A by $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ and let W=Span $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$.

- a. Is **b** in $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$? How many vectors are in $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$?
- b. Is **b** in W? How many vectors are in W?
- c. Show that \mathbf{a}_1 is in W. [*Hint:* Row operations are unnecessary.]

- 3. A thin triangular plate of uniform density and thickness has vertices at $v_1 = (0, 2), v_2 = (8, 2), v_3 = (2, 4)$ as in the figure to the? right, and the mass of the plate is 3 g. Complete parts a and b below.
- a. Find the (x,y)-coordinates of the center of mass of the plate. This "balance point" of the plate coincides with the center of mass of a system consisting of three 1-gram point masses located at the vertices of the plate.
- b. Determine how to distribute an additional mass of 6 g at the three vertices of the plate to move the balance point of the plate to (2,2). [*Hint:* Let w_1 , w_2 , and w_3 denote the masses added at the three vertices, so that $w_1+w_2+w_3=6$.]

