1. Use the accompanying figure to write each vectors $\mathbf{x}, \mathbf{y}, \mathbf{c}$ and \mathbf{w} as a linear combination of \mathbf{u} and \mathbf{v}. Is every vector in R^{2} a linear combination of \mathbf{u} and \mathbf{v} ?

2. Let $\mathrm{A}=\left[\begin{array}{ccc}1 & 0 & -4 \\ 0 & 3 & -2 \\ -2 & 6 & 3\end{array}\right]$, and $\mathrm{b}=\left[\begin{array}{c}4 \\ 1 \\ -4\end{array}\right]$

Denote the columns of A by $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$ and let $\mathrm{W}=\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$.
a. Is \mathbf{b} in $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$. How many vectors are in $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$?
b. Is \mathbf{b} in W ? How many vectors are in W ?
c. Show that \mathbf{a}_{1} is in W. [Hint: Row operations are unnecessary.]
3. A thin triangular plate of uniform density and thickness has vertices at $v_{1}=(0,2), v_{2}=(8,2), v_{3}=(2,4)$
as in the figure to the? right, and the mass of the plate is 3 g . Complete parts a and b below.
a. Find the (x, y)-coordinates of the center of mass of the plate. This "balance point" of the plate coincides with the center of mass of a system consisting of three 1 -gram point masses located at the vertices of the plate.
b. Determine how to distribute an additional mass of 6 g at the
 three vertices of the plate to move the balance point of the plate to $(2,2)$. [Hint: Let $\mathrm{w}_{1}, \mathrm{w}_{2}$, and w_{3} denote the masses added at the three vertices, so that $\mathrm{w}_{1}+\mathrm{w}_{2}+\mathrm{w}_{3}=6$.]

