1. Compute the following combination vector using
a. Ordinary Matrix Multiplication
b. Using Linear Combinations of Columns of A.
c. Using Combinations of Rows of b.
$\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 2 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=$
2. Write the Matrix equation as a vector equation.

$$
\left[\begin{array}{cccc}
1 & 1 & 0 & 1 \\
1 & 1 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
2
\end{array}\right]
$$

3. Write the given system of equations as

$$
\left\{\begin{array}{l}
x_{1}-x_{2}+x_{3}-x_{4}=0 \\
x_{1}+x_{2}+x_{3}-x_{4}=0 \\
x_{1}-x_{2}+x_{3}+x_{4}=0
\end{array}\right.
$$

a. Matrix equation
b. Vector equation
4. Let $W=\{(1,1,1),(1,-1,2),(1,0,1)\}$, Express the vector b in terms of vectors in W. $b=(2,1,1)$
5. Let $\mathrm{W}=\{(1,1,1),(1,-1,2),(0,2,-1)\}$ Is the vector b given below in the Linear span of the set W. Prove your answer. $b=(2,3,1)$
6. Let $\mathbf{A}=\left[\begin{array}{cc}3 & -5 \\ -2 & 6 \\ 1 & 1\end{array}\right], \mathbf{u}=\left[\begin{array}{l}0 \\ 4 \\ 4\end{array}\right]$

Is \mathbf{u} in the plane spanned by the columns of A, namely $\operatorname{CL}(\mathrm{A})$?
7. $\quad \mathrm{Let}\left[\begin{array}{ccc}1 & 2 & 1 \\ -1 & 1 & 0 \\ 1 & 5 & 2\end{array}\right]$

Find a vector in R^{3} orthogonal to vectors represented by the rows of the matrix A .

