1. Find the general solution to the equation, then describe the solutions of the following system in parametric vector form. Also, give a geometric description of the solution set

$$
x_{1}+3 x_{2}+x_{3}=1
$$

$$
-4 x_{1}-9 x_{2}+2 x_{3}=-1
$$

$$
3 x_{2}-6 x_{3}=-3
$$

2. Find the parametric equation of the line through a parallel to \mathbf{b}.

$$
\mathbf{a}=\left[\begin{array}{c}
-2 \\
0
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
-5 \\
3
\end{array}\right]
$$

3. Find a parametric equation of the line M through \mathbf{p} and \mathbf{q}.
$\mathbf{p}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \mathbf{q}=\left[\begin{array}{c}-2 \\ 2\end{array}\right]$
4. Mark each statement True or False. Justify each answer.
a. A homogeneous equation is always consistent.
b. The equation $\mathrm{A} \mathbf{x}=\mathbf{0}$ gives an explicit description of its solution set.
c. The homogeneous equation $\mathrm{A} \mathbf{x}=\mathbf{0}$ has the trivial solution if and only if the equation has at least one free variable.
d. The equation $\mathbf{x}=\mathbf{p}+$ tv describes a line through \mathbf{v} parallel to \mathbf{p}.
e. The solution set of $A \mathbf{x}=\mathbf{b}$ is the set of all vectors of the form $\mathbf{w}=\mathbf{p}+\mathbf{v}_{\mathrm{h}}$, where \mathbf{v}_{h} is any solution of the equation $\mathrm{A} \mathbf{x}=\mathbf{0}$.
5. Construct a 3×3 nonzero matrix A such that the vector $\mathbf{b}=(1,-1,1)$ is a solution to $\mathrm{A} \mathbf{x}=\mathbf{0}$.
6. Let \mathbf{A} be an mxn matrix, and let \mathbf{u} and \mathbf{v} be vectors in \mathbf{R}^{n}.

