1. Determine if the given vectors are Linearly independent.

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right] \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

2. Find the number of linearly independent columns in the given matrix A.

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 1 & 2 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & -1 \\
1 & 0 & 1 & 1
\end{array}\right]
$$

3. For what value of h is $\mathbf{v}_{\mathbf{3}}$ is in Linear Span of $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$
$\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right] \mathbf{v}_{3}=\left[\begin{array}{l}2 \\ h \\ 9\end{array}\right]$
4. Find the value of h so that the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
2 \\
h \\
1
\end{array}\right] \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

5. Given observe that the third row is the sum of the first two rows.
a. Find a nontrivial solution of $\mathrm{A} \mathbf{x}=0$, and show that the solution vector is orthogonal to the first two rows of the matrix A.
b. Find a nontrivial solution of $\mathbf{A}^{\mathrm{T}} \mathbf{x}=\mathbf{0}$, and show that the solution vector is orthogonal to the first two rows of the matrix $\mathbf{A}^{\mathbf{T}}$.
$\mathbf{A}=\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 3 & 3\end{array}\right]$
