Math 002B Assignment $1.8 \quad$ Last Name___1st_

1. Let $\mathbf{A}=\left[\begin{array}{cc}1 & -1 \\ 1 & 2\end{array}\right]$.

Define Linear Transformation $T: R^{2} \rightarrow R^{2}$, by $T(x)=\mathbf{A} x$. Find the images under T of $\mathbf{u}=\left[\begin{array}{l}1 \\ 3\end{array}\right], \mathbf{v}=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$
2. Define a Linear Transformation $T: R^{3} \rightarrow R^{3}$, by $T(x)=\mathbf{A} x$.

Find the vector \mathbf{x} who is image under T is \mathbf{b}, and determine if \mathbf{x} is unique.

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 0 & -2 \\
-2 & 1 & 6 \\
3 & -2 & -5
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
-1 \\
7 \\
-3
\end{array}\right]
$$

3. Let $T: R^{2} \rightarrow R^{2}$ be a linear transformation such that $\mathrm{T}(1,0)=(-1,1)$ and $\mathrm{T}(0,1)=(1,-2)$ Find the image of $(1,-4)$ under T.
4. Given $\mathbf{v}=\left(v_{1}, v_{2}, v_{2}\right)$, and $T(\mathbf{v})=\left(v_{1}+v_{2}, v_{1}+2 v_{2}+v_{3}, v_{2}+v_{3}\right)$ Find all vectors in the domain of T so that $\mathrm{T}(\mathbf{v})=0$
5. Let $T: R^{3} \rightarrow R^{3}$ be a linear transformation that projects each vector $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$ onto the plane $\mathrm{x}_{2}=0$, so $\mathrm{T}(\mathrm{x})=\left(\mathrm{x}_{1}, 0, \mathrm{x}_{3}\right)$. Show that T is a linear transformation.
6. Show that the transformation T defined by $\left.T(x)=\left(x_{1}, x_{2}\right).\right)=\left(4 x_{1}-2 x_{2}, x_{1}+4+4 x_{2}\right)$ is not linear.
