1. Assume that T is a linear transformation. Find the standard matrix of T .
$T: \mathfrak{R}^{2} \rightarrow \mathfrak{R}^{3}$
$T\left(e_{1}\right)=(2,3,1), T\left(e_{1}\right)=(-1,2,3)$.
2. Ascume that T is a linear transformation. Find the standard matrix of T, Where $T: \mathfrak{R}^{2} \rightarrow \mathfrak{R}^{2}$ rotates points (about the origin) through $5 \pi / 6$ radians.
3. Assume that T is a linear transformation. Find the standard matrix of T . That transform the parallelogram with vertices $(0,0),(2,0),(1,2)$ and $(3,2)$, to a square with edges $(0,0),(1,0),(0,1)$ and $(1,1)$ Verify your answer by mapping the four vertices of the rectangle to the vertices of the square.
4. Assume that T is a linear transformation. Find the standard matrix of T . $T: \mathfrak{R}^{2} \rightarrow \mathfrak{R}^{3}$ is a vertical shear transformation that maps \mathbf{e}_{1} into $\mathbf{e}_{1}-18 \mathbf{e}_{2}$ but leaves the vector \mathbf{e}_{2} unchanged.
5. Assume that T is a linear transformation. Find the standard matrix of T . $T: \mathfrak{R}^{2} \rightarrow \mathfrak{R}^{3}$ first reflects points through the horizontal x_{1}-axis and then reflects points through the origin.
6. Assume that T is a linear transformation. Find the standard matrix of T . $T: R^{3} \rightarrow R^{3}$, rotates the vectors in R^{3} about the x axis by an angle θ. Verify your answer by rotating $(1,0,0),(1,1,1),(1,1,-1)$ by an angle $\pi / 2$.
