Give complete solutions to the following problems. Be sure to provide all the necessary steps to support your answers.

1. Let $\mathbf{A}=\left[\begin{array}{cc}2 & -3 \\ -4 & 6\end{array}\right]$, and $\mathbf{B}=\left[\begin{array}{cc}4 & -5 \\ 3 & k\end{array}\right]$.

What value(s) of k , if any, will make $\mathrm{A} \mathrm{B}=\mathrm{B} \mathrm{A}$?
2. Let $\mathbf{u}=\left[\begin{array}{c}-2 \\ 3 \\ -4\end{array}\right]$, and $\mathbf{v}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$. Compute $\mathbf{u}^{\mathrm{T}} \mathbf{v}, \mathbf{v}^{\mathrm{T}} \mathbf{u}, \mathbf{u} \mathbf{v}^{\mathrm{T}}$, and $\mathbf{v} \mathbf{u}^{\mathrm{T}}$.
3. Use an agumented matrix and the rref function to find the inverse of the matrix A

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 0 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

4. Solve the given matrix equation using an inverse matrix computed in problem 3.

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 0 & 1 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
5 \\
4 \\
3
\end{array}\right]
$$

5. $\quad \mathrm{T}$ is a linear transformation from R^{2} into R^{2}.
$T\left(x_{1}, x_{2}\right)=\left(-5 x_{1}+9 x_{2}, 4 x_{1}-7 x_{2}\right)$
a. Find the associated matrix transformation for the following
b. Show that T is invertible and find a formula for T^{-1} in the form $T^{-1}\left(x_{1}, x_{2}\right)=$
6. $\quad \mathrm{T}$ is a linear transformation from R^{3} into R^{3}.
$T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+2 x_{2}+x_{3}, x_{1}+x_{3}, x_{1}+2 x_{2}+2 x_{3}\right)$
a. Find the associated matrix transformation for the following
b. Show that T is invertible and find a formula for T^{-1} in the form $T^{-1}\left(x_{1}, x_{2}, x_{3}\right)=$
