1. Write the matrix A as a product of elementary matrices.
a. $\quad \mathbf{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]$
b. $\quad \mathbf{A}=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 0 & 1 \\ 1 & 0 & 1\end{array}\right]$
2. Factor the given matrix into a product of an upper and a lower triangular matrices.

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

3. Use forward and backward substitution to solve the given system

$$
\left\{\begin{array}{c}
x+2 y=3 \\
x+y=2 \\
x+z=2
\end{array}\right.
$$

4. Compute the transfer matrix of the network in the figure.

Let $\mathbf{A}=\left[\begin{array}{cc}4 / 3 & -12 \\ -1 / 4 & 3\end{array}\right]$, Design a ladder network whose transfer matrix is A by finding a suitable matrix factorization of A .

