Give complete solutions to the following problems. Be sure to provide all the necessary steps to support your answers.

1. Find the vector x determined by the given coordinate vector $[\mathrm{x}]_{\mathrm{B}}$ and the given basis B . Illustrate your answer with a figure, as in the solution of Practice Problem 2.
$\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -1\end{array}\right]\right\},[x]_{B}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$
2. The vector \mathbf{x} is in a subspace H with a basis $B=\left\{b_{1}, b_{2}\right\}$. Find the B-coordinate vector of \mathbf{x}.

$$
\mathbf{b}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \mathbf{x}=\left[\begin{array}{l}
1 \\
5
\end{array}\right]
$$

3. The vector \mathbf{x} is in a subspace H with a basis $B=\left\{b_{1}, b_{2}\right\}$. Find the B-coordinate vector of
\mathbf{x}.
$\mathbf{b}_{1}=\left[\begin{array}{c}1 \\ 5 \\ -3\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{c}-3 \\ -7 \\ 5\end{array}\right], \mathbf{x}=\left[\begin{array}{c}4 \\ 10 \\ -7\end{array}\right]$.
4. Display an echelon form of A, then find bases for Col A and Nul A, and then state the dimensions of each subspace.

$$
\mathbf{A}=\left[\begin{array}{llll}
1 & 0 & 1 & 2 \\
2 & 1 & 0 & 1 \\
5 & 1 & 3 & 7 \\
3 & 0 & 3 & 6
\end{array}\right]
$$

5. Find a basis for the subspace spanned by the given vectors. What is the dimension of the subspace?
$v_{1}=\left[\begin{array}{c}1 \\ -3 \\ 2 \\ -4\end{array}\right], v_{2}=\left[\begin{array}{c}-3 \\ 9 \\ -6 \\ 12\end{array}\right], v_{3}=\left[\begin{array}{c}2 \\ -1 \\ 4 \\ 2\end{array}\right], v_{4}=\left[\begin{array}{c}-4 \\ 5 \\ -3 \\ 7\end{array}\right]$
6. Let $H=$ Span $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$ and $\mathrm{B}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$. Show that B is a basis for H and \mathbf{x} is in H, and find the B -coordinate vector of \mathbf{x}, when
$v_{1}=\left[\begin{array}{c}-6 \\ 4 \\ -9 \\ 4\end{array}\right], v_{2}=\left[\begin{array}{c}8 \\ -3 \\ 7 \\ -3\end{array}\right], v_{3}=\left[\begin{array}{c}-9 \\ 5 \\ -8 \\ 3\end{array}\right], \mathbf{x}=\left[\begin{array}{c}4 \\ 7 \\ -8 \\ 3\end{array}\right]$
