Give complete solutions to the following problems. Be sure to provide all the necessary steps to support your answers.

1. Let H be the set of all vectors of the form

$$
\left[\begin{array}{c}
2 t \\
0 \\
-t
\end{array}\right] \text {, Show that } \mathrm{H} \text { is a subspace of } \mathrm{R}^{3}
$$

2. Let $v_{1}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right], v_{2}=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right], v_{3}=\left[\begin{array}{l}4 \\ 2 \\ 6\end{array}\right], w=\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right]$,
a. Is \mathbf{w} in $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$?.
b. How many linearly independent vectors in $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$?
c. Is \mathbf{w} in the subspace spanned by $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$? Prove your answer.
3. let W be the set of all vectors of the form shown, where a, b, and c represent arbitrary real numbers. In each case, either find a set S of vectors that spans W or give an example to show that W is not a vector space.
i. $\left[\begin{array}{c}3 a+b \\ 4 \\ a-5 b\end{array}\right], \quad$ ii. $\quad\left[\begin{array}{c}-a+1 \\ a-6 b \\ 2 a+b\end{array}\right]$
4. Determine if the set H of all matrices of the $\left[\begin{array}{ll}a & b \\ \mathrm{a}, \mathrm{b} \text { and } \mathrm{c} \text { are real numbers. } & c\end{array}\right]$ is a vector subspace of $\mathrm{M}_{2 ? 2}$, where
5. Prove that All polynomials of degree less than or equal to three, with integers as coefficients form a vector subspace of the vector space of continuous functions on $(-\infty, \infty)$
