Give complete solutions to the following problems. Be sure to provide all the necessary steps to support your answers.

1. Determine ifw is in $\operatorname{Nul}(\mathrm{A})$, where

$$
w=\left[\begin{array}{c}
1 \\
3 \\
-4
\end{array}\right], A=\left[\begin{array}{ccc}
3 & -5 & -3 \\
6 & -2 & 0 \\
-8 & 4 & 1
\end{array}\right]
$$

2. Either use an appropriate theorem to show that the given set, W , is a vector space, or find a specific example to the contrary.
$\left\{\left[\begin{array}{l}a \\ b \\ c\end{array}\right]: a+b+c=2\right\}$
3. Find a nonzero vector in $\operatorname{Nul}(\mathrm{A})$ and a nonzero vector in $\operatorname{Col}(\mathrm{A})$.

$$
A=\left[\begin{array}{ccc}
7 & -2 & 0 \\
-2 & 0 & -5 \\
0 & -5 & 7 \\
-5 & 7 & -2
\end{array}\right]
$$

4. Determine whether \mathbf{w} is in the column space of A, the null space of A, or both, where
$w=\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 0\end{array}\right], A=\left[\begin{array}{cccc}-8 & 5 & -2 & 0 \\ -5 & 2 & 1 & -2 \\ 10 & -8 & 6 & -3 \\ 3 & -2 & 1 & 0\end{array}\right]$
5. Find an explicit description of $\operatorname{Nul}(\mathrm{A})$ by listing vectors that span the null space.
$A=\left[\begin{array}{cccc}1 & 3 & 5 & 0 \\ 0 & 1 & 4 & -2\end{array}\right]$
6. Find A such that the given set is $\operatorname{Col}(\mathrm{A})$.
$\left\{\left[\begin{array}{c}2 s+3 t \\ r-s-2 t \\ 4 r+2 \\ 3 r-s-t\end{array}\right]: \mathrm{r}, \mathrm{s}\right.$ and t are real $\}$
