Give complete solutions to the following problems. Be sure to provide all the necessary steps to support your answers.

1. Determine if the given set forms a Basis for $\mathrm{R}^{3}$.
a. $\left[\begin{array}{l}1 \\ 3 \\ 4\end{array}\right],\left[\begin{array}{c}1 \\ 2 \\ -4\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$,
b. $\left[\begin{array}{l}1 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}-1 \\ -4 \\ -2\end{array}\right]$
2. Find a basis for the set of vectors in $\mathrm{R}^{3}$ in the plane $x+2 y+z=0$.
3. Find a Basis for the $\operatorname{Nul}(\mathrm{A})$ and $\operatorname{Col}(\mathrm{A})$ of the given matrix.

$$
A=\left[\begin{array}{ccc}
7 & -2 & 0 \\
-2 & 0 & -5 \\
0 & -5 & 7 \\
-5 & 7 & -2
\end{array}\right]
$$

4. Let $\mathrm{H}=\operatorname{Span}\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$ and $\mathrm{K}=\operatorname{Span}\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right\}$ where $v_{1}=(1,1,2), v_{2}=(-1,2,1), v_{3}=(0,1,1)$
$u_{1}=(1,-1,1), u_{2}=(-1,1,1), u_{3}=(-3,3,-1)$
Find Basis for $\mathrm{H}, \mathrm{K}$ and $\mathrm{H}+\mathrm{K}$.
5. Show that $\{t, \sin t, \cos 2 t, \sin t \cos t\} s$ a linearlv indenendent set of functions defined on R. Start by assuming that $c_{1} t+c_{2} \sin t+c_{3} \cos 2 t+c_{4} \sin t \cos t$ Equation (5) must hold for all real $t$, so choose several specific values of $t$ (say, $t=0,0.1$, 0.2 ) until you get a system of enough equations to determine that all the $c_{j}$ must be zero.
6. Find an explicit description of $\operatorname{Nul}(\mathrm{A})$ by listing vectors that span the null space.
$A=\left[\begin{array}{cccc}1 & 3 & 5 & 0 \\ 0 & 1 & 4 & -2\end{array}\right]$
