Give complete solutions to the following problems. Be sure to provide all the necessary steps to support your answers.

1. Find the vector x determined by the given coordinate vector $[\mathrm{x}]_{\mathrm{B}}$ and the given basis B .
a. $\quad B=\left\{\left[\begin{array}{c}-3 \\ 3\end{array}\right],\left[\begin{array}{c}1 \\ -5\end{array}\right]\right\},[x]_{B}=\left[\begin{array}{c}2 \\ 5\end{array}\right]$
b. $\left\{\left[\begin{array}{c}5 \\ -3 \\ -5\end{array}\right],\left[\begin{array}{c}-3 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}3 \\ -5 \\ 5\end{array}\right]\right\},[x]_{B}=\left[\begin{array}{c}1 \\ 2 \\ -2\end{array}\right]$
2. Find the coordinate vector $[\mathrm{x}]_{\mathrm{B}}$ of x relative to the given basis $B=\left\{b_{1}, b_{2}\right\}$

$$
b_{1}=\left[\begin{array}{c}
-2 \\
3
\end{array}\right], \quad b_{2}=\left[\begin{array}{l}
1 \\
4
\end{array}\right], \quad x=\left[\begin{array}{c}
1 \\
-7
\end{array}\right]
$$

3. Find the coordinate vector $[\mathrm{x}]_{\mathrm{B}}$ of x relative to the given basis $B=\left\{b_{1}, b_{2}, b_{3}\right\}$

$$
b_{1}=\left[\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right], b_{2}=\left[\begin{array}{c}
-4 \\
5 \\
8
\end{array}\right], b_{3}=\left[\begin{array}{c}
2 \\
-2 \\
8
\end{array}\right], x=\left[\begin{array}{c}
-9 \\
10 \\
-6
\end{array}\right]
$$

4. Find the change-of-coordinates matrix from B to the standard basis in R^{2}
$B=\left\{\left[\begin{array}{c}-4 \\ 1\end{array}\right],\left[\begin{array}{c}-3 \\ 5\end{array}\right]\right\}$
5. Use an inverse matrix to find $[\mathrm{x}]_{\mathrm{B}}$ for the given x and B .
$B=\left\{\left[\begin{array}{l}3 \\ 4\end{array}\right],\left[\begin{array}{l}5 \\ 7\end{array}\right]\right\}, x=\left[\begin{array}{c}5 \\ -5\end{array}\right]$
6. The set $\left\{1-t^{2},-2 t-t^{2} 1+t-t^{2}\right\}$ is a hasis for set of polynomials P_{2}. Find the coordinate vector of $p(t)=-6-12 t+t^{2}$ slative to B .
