Give complete solutions to the following problems. Be sure to provide all the necessary steps to support your answers.

1. For each subspace find a basis and state the dimension.
a. $\quad\left\{\left[\begin{array}{c}s-3 t \\ s+t \\ 2 t\end{array}\right], \mathrm{s}\right.$ and t in R$\}$
b. $\quad\left\{\left[\begin{array}{c}s \\ s+t \\ 2 t\end{array}\right], \mathrm{s}\right.$ and t in R$\}$
c. $\quad\{(a, b, c): a-3 b+c=0, b-2 c=0,2 b-c=0\}$
2. Find the dimension of the of the subspace H spanned by the given set of vectors.

$$
b_{1}=\left[\begin{array}{c}
-2 \\
2
\end{array}\right], b_{2}=\left[\begin{array}{l}
1 \\
4
\end{array}\right], b_{3}\left[\begin{array}{c}
1 \\
-7
\end{array}\right]
$$

4. Determine the dimension of the Null Space and the Column space

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & -1 & 2 \\
1 & 1 & 4 \\
1 & 0 & 3
\end{array}\right]
$$

5. Find the dimension of the subspace of aal vectors in R^{3} whose first and third entries are equal.
6. Consider the first four Laguerre polynomials in the set $\left\{1,1-t, 2-4 t+t^{2}, 6-18 t+9 t^{2}-t^{3}\right\}$
a. Prove that the set S forms a linearly independent set hence it forms a basis for the set of polynomials P_{2}.
b. Find the coordinate vector of $p(t)=-6-12 t+t^{2}$ elative to B.
