Give complete solutions to the following problems. Be sure to provide all the necessary steps to support your answers.

1. Find the characteristic equation for the matrix A and determine if the solutions are real or complex, and the multiplicity of each.

$$
\mathbf{A}=\left[\begin{array}{ccc}
4 & 0 & -1 \\
-1 & 0 & 4 \\
0 & 2 & 3
\end{array}\right]
$$

2. Find the eigenvalues and the eigenvectors of the matrix A , then determine both the algebraic and geometric multiplicities of each eigenvalue, and verify that

$$
|\mathbf{A}|=\lambda_{1} \lambda_{2} \lambda_{3}
$$

$$
\mathbf{A}=\left[\begin{array}{lll}
2 & 3 & 0 \\
0 & 1 & 4 \\
0 & 0 & 2
\end{array}\right]
$$

3. Find all eigenvectors p_{1}, p_{2}, p_{3}, of matrix A, then form the matrix $P=\left[p_{1} p_{2} p_{3}\right]$ and the diagonal matrix D whose diagonal entries are the eigenvalues of A in the order λ_{1}, λ_{2}, λ_{3} down the diagonal, then confirm that $\mathbf{D}=\mathbf{P}^{-1} \mathbf{A} \mathbf{P}$

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

4. Let $\mathbf{p}=\left[\begin{array}{lll}.5 & .2 & .3 \\ .3 & .8 & .3 \\ .2 & 0 & .4\end{array}\right], \mathrm{v}_{1}=\left[\begin{array}{l}.3 \\ .6 \\ .1\end{array}\right], \mathrm{v}_{2}=\left[\begin{array}{c}1 \\ -3 \\ 2\end{array}\right], \mathrm{v}_{3}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right], w=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
a. Show that $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} are eigenvectors of A. [Note: A is the stochastic matrix studied in Example 3 of Section 4.9.]
b. Let \mathbf{x}_{0} be any vector in \mathbf{R}^{3} with nonnegative entries whose sum is 1 . (In Section 4.9 , \mathbf{x}_{0} was called a probability vector.) Explain why there are constants $\mathrm{c}_{1}, \mathrm{c}_{2}$, and c_{3} such that $\mathbf{x}_{0}=\mathrm{c}_{1} \mathbf{v}_{1}+\mathrm{c}_{2} \mathbf{v}_{2}+\mathrm{c}_{3} \mathbf{v}_{3}$. Compute $\mathbf{w}^{\mathrm{T}} \mathbf{x}_{0}$, and deduce that $\mathrm{c}_{1}=1$.
c. For $k=1,2, \ldots$, define $\mathbf{x}_{\mathrm{k}}=\mathrm{A}^{\mathrm{k}} \mathbf{x}_{0}$, with \mathbf{x}_{0} as in part b. Show that \mathbf{x}_{k} approaches \mathbf{v}_{1} as k increases.
