Last Name

Give complete solutions to the following problems. Be sure to provide all the necessary steps to support your answers.

1. Find the characteristic equation for the matrix A and determine if the solutions are real or complex, and the multiplicity of each.

	4	0	-1
A =	-1	0	4
	0	2	3

2. Find the eigenvalues and the eigenvectors of the matrix A, then determine both the algebraic and geometric multiplicities of each eigenvalue, and verify that

$$\begin{vmatrix} \mathbf{A} \end{vmatrix} = \lambda_1 \lambda_2 \lambda_3$$
$$\mathbf{A} = \begin{bmatrix} 2 & 3 & 0 \\ 0 & 1 & 4 \\ 0 & 0 & 2 \end{bmatrix}$$

3. Find all eigenvectors p_1 , p_2 , p_3 , of matrix A, then form the matrix $P = [p_1 \ p_2 \ p_3]$ and the diagonal matrix D whose diagonal entries are the eigenvalues of A in the order λ_1 , λ_2 , λ_3 down the diagonal, then confirm that $\mathbf{D} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

4. Let
$$\mathbf{p} = \begin{bmatrix} .5 & .2 & .3 \\ .3 & .8 & .3 \\ .2 & 0 & .4 \end{bmatrix}, v_1 = \begin{bmatrix} .3 \\ .6 \\ .1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}, v_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, w = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

- a. Show that \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 are eigenvectors of A. [Note: A is the stochastic matrix studied in Example 3 of Section 4.9.]
- b. Let \mathbf{x}_0 be any vector in \mathbf{R}^3 with nonnegative entries whose sum is 1. (In Section 4.9, \mathbf{x}_0 was called a probability vector.) Explain why there are constants \mathbf{c}_1 , \mathbf{c}_2 , and \mathbf{c}_3 such that $\mathbf{x}_0 = \mathbf{c}_1 \mathbf{v}_1 + \mathbf{c}_2 \mathbf{v}_2 + \mathbf{c}_3 \mathbf{v}_3$. Compute $\mathbf{w}^T \mathbf{x}_0$, and deduce that $\mathbf{c}_1 = 1$.

c. For $k = 1, 2,..., define \mathbf{x}_k = A^k \mathbf{x}_0$, with \mathbf{x}_0 as in part b. Show that \mathbf{x}_k approaches \mathbf{v}_1 as k increases.