Give complete solutions to the following problems. Be sure to provide all the necessary steps to support your answers.

1. Let $D = \{d_1, d_2\}$ and $B = \{b_1, b_2\}$ be bases for vector spaces V and W, respectively. Let $T: V \rightarrow W$ be a linear transformation with the property that $T(d_1) = 2b_1 - 3b_2$, $T(d_2) = -4b_1 + 5b_2$ Find the matrix for T relative to D and B.

- 2. Let $T : \mathbb{P}_2 \to \mathbb{P}_4$ be the transformation that maps a polynomial $\mathbf{p}(t)$ into the polynomial $p(t) + t^2 p(t)$
- a. Find the image of $p(t) = 2 t + t^2$
- b. Show that T is a linear transformation.
- c. Find the matrix for T relative to the bases $\{1,t,t^2\}$ and $\{1,t,t^2,t^3,t^4\}$

3. Let $\mathbb{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ be a basis for a vector space V. Find $T(3\mathbf{b}_1 - 4\mathbf{b}_2)$ when T is a linear transformation from V to V whose matrix relative to B is

$$\begin{bmatrix} T \end{bmatrix}_{B} = \begin{bmatrix} 0 & -6 & 1 \\ 0 & 5 & -1 \\ 1 & -2 & 7 \end{bmatrix}$$

4. Find the B-matrix for the transformation $\mathbf{x} \rightarrow \mathbf{A}\mathbf{x}$ when $B = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$.

	-14	4	-14		-1		-1		-1	
A =	-33	9	-31	, b ₁ =	-2	, b ₂ =	-1	, b ₃ =	-2	
	11	-4	11		1		1		0	

5. Let T be a transformation who's a standard matrix is given below. Find a Basis for \Re^3 with the property that $\begin{bmatrix} T \end{bmatrix}_B$ is diagonal. $A = \begin{bmatrix} 2 & 0 & -2 \\ 1 & 3 & 2 \\ 0 & 0 & 3 \end{bmatrix}$