Give complete solutions to the following problems. Be sure to provide all the necessary steps to support your answers.

1. Let $D=\left\{d_{1}, d_{0}\right\}$ and $B=\left\{b_{1}, b_{2}\right\} \quad$ be bases for vector spaces V and W , respectively. Let $T: V \rightarrow W$ be a linear transformation with the property that $T\left(d_{1}\right)=2 b_{1}-3 b_{2}, T\left(d_{2}\right)=-4 b_{1}+5 b_{2}$
Find the matrix for T relative to D and B.
2. Let $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{4}$ be the transformation that maps a polynomial $\mathbf{p}(\mathrm{t})$ into the polynomial $p(t)+t^{2} p(t)$
a. Find the image of $p(t)=2-t+t^{2}$
b. Show that T is a linear transformation.
c. Find the matrix for T relative to the bases $\left\{1, \mathrm{t}, \mathrm{t}^{2}\right\}$ and $\left\{1, \mathrm{t}, \mathrm{t}^{2}, \mathrm{t}^{3}, \mathrm{t}^{4}\right\}$
3. Let $\mathrm{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ be a basis for a vector space V. Find $T\left(3 \mathbf{b}_{1}-4 \mathbf{b}_{2}\right)$ when T is a linear transformation from V to V whose matrix relative to B is

$$
[T]_{B}=\left[\begin{array}{ccc}
0 & -6 & 1 \\
0 & 5 & -1 \\
1 & -2 & 7
\end{array}\right]
$$

4. Find the B-matrix for the transformation $\mathbf{x} \ldots-->A \mathbf{x}$ when $B=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$. $\mathbf{A}=\left[\begin{array}{ccc}-14 & 4 & -14 \\ -33 & 9 & -31 \\ 11 & -4 & 11\end{array}\right], \mathbf{b}_{1}=\left[\begin{array}{c}-1 \\ -2 \\ 1\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right], \mathbf{b}_{3}=\left[\begin{array}{c}-1 \\ -2 \\ 0\end{array}\right]$
5. Let T be a transformation who's a standard matrix is given below. Find a Basis for \Re^{3} with the property that $[T]_{B}$ is diagonal.
$A=\left[\begin{array}{ccc}2 & 0 & -2 \\ 1 & 3 & 2 \\ 0 & 0 & 3\end{array}\right]$
