Give complete solutions to the following problems. Be sure to provide all the necessary steps to support your answers.

1. A particle moving in a planar force field has position vector x that satisfies $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ The 2×2 matrix A has eigenvalues 2 and 3 , with corresponding eigenvectors $\mathbf{v}_{1}=(-2,1)$, and $\mathbf{v}_{2}=(2,1)$. Find the position of the particle at time t assuming $x(0)=(-3,3)$
2. Solve the initial value problem $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ for $\mathrm{t}>=0$ with $\mathbf{x}(0)=(4,3)$. Classify the nature of the origin as an attractor, repeller, or a saddle point of the dynamical system described by $\mathbf{x}^{\prime}=\mathbf{A x}$. Find the direction of the greatest attraction and or/ repulsion. When the origin is a saddle point, sketch a typical trajectory.

$$
\mathbf{A}=\left[\begin{array}{cc}
3 & 1 \\
-2 & 1
\end{array}\right]
$$

3. The circuit in the figure is described by the equation

$$
\left[\begin{array}{c}
i_{L}^{\prime} \\
v_{C}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 / L \\
-1 / C & -1 /(R C)
\end{array}\right]\left[\begin{array}{c}
i_{L} \\
v_{C}
\end{array}\right]
$$

Where i_{L} is the current through the inductor L and v_{C} is the voltage drop across the capacitor C . Find a formulas for i_{L} and v_{C} when $\mathrm{R}=0.5$ ohms and $\mathrm{C}=2.5$ farads, $\mathrm{L}=0.5$

L henry, the initial current is 0.0 amp and the initia voltage is 12.0 volts.
4. Solve the given system of linear equations initial value problem.

$$
\left\{\begin{array}{l}
\frac{d y_{1}}{d t}=-0.2 y_{1} \\
\frac{d y_{2}}{d t}=0.2 y_{1}-0.1 y_{2}, \quad y_{1}(0)=1, y_{2}(0)=1, y_{3}(0)=1, \\
\frac{d y_{3}}{d t}=0.1 y_{3}
\end{array}\right.
$$

