\qquad 1st

Give complete solutions to the following problems. Be sure to provide all the necessary steps to support your answers.

1. let W be a the set of all points on a line parallel to $\mathbf{v}=4 \mathbf{i}+3 \mathbf{j}$ and passing through the origin.
a. Show that W is vector subspace of \Re^{2}.
b. Find the orthogonal complement of W.
2. Let $S=\{(-1,4,3),(1,1,0)\}, \mathbf{u}=,(-1,1,0)$

Find the projection of \mathbf{u} onto the linear span of S
3. Let $S=\{(-4,-1,1),(0,1,1)\}, \mathbf{x}=,(-1,1,0)$

Express \mathbf{x} as a linear combination of two vectors, one in the linear span of S and another in the orthogonal complement of span S.
4. Let $S=\{(1,1,0,-1),(0,-1,1,-1),(1,0,1,1)\}, \mathbf{x}=,(3,4,5,6)$

Express \mathbf{x} as a linear combination of two vectors, one in the linear span of S and another in the orthogonal complement of span S.
5. Let $S=\{(-1,1,1),(1,0,1)\}, \mathbf{x}=,(1,2,3)$

Find the projection of x onto the linear span of S
a. using vector projection.
b. using a projection matrix U who's columns are the orthogonal basis vectors in S .
6. Find the distance from \mathbf{V} to the plane in \Re^{3} spanned by the vectors \mathbf{u}_{1} and \mathbf{u}_{2}. $\mathbf{v}_{1}=(3,5,2), \mathbf{u}_{1}=(1,-1,2), \mathbf{u}_{2}=(1,2,1)$

