Give complete solutions to the following problems. Be sure to provide all the necessary steps to support your answers.

1. Compute the orthogonal projection of the vector \mathbf{u} onto the $\operatorname{col}(\mathbf{A})$ using a projection Matrix.

$$
\mathbf{A}=\left[\begin{array}{cc}
1 & 2 \\
-1 & 1 \\
2 & 0 \\
0 & 1
\end{array}\right], \mathbf{u}=\left[\begin{array}{l}
1 \\
2 \\
1 \\
1
\end{array}\right]
$$

2. consider the system of equations

$$
\left\{\begin{array}{c}
x+y=7 \\
-x+y=0 \\
-x+2 y=-7
\end{array}\right.
$$

a. Find the projection Matrix onto $\operatorname{Col}(\mathbf{A})$, call it \mathbf{P}.
b. Find the projection of \mathbf{b} onto the $\operatorname{col}(\mathbf{A})$
c. Solve the system $\mathbf{A x}=\mathbf{P b}$ using an rref of an augmented matrix.
d. Find the associated normal system, $\mathbf{A x}=\mathbf{b}$
e. Give the least squares solution of the system.
f. Find the least squares vector and computes the least squares error.
3. Factor the Matrix \mathbf{A} into $\mathbf{Q R}$ in problem 2 then us the factorization to find the least squares solution.

