Give complete solutions to the following problems. Be sure to provide all the necessary steps to support your answers.

1. Compute the quadratic form $\mathbf{x}^{\mathrm{T}} A \mathbf{x}$, for

$$
\left[\begin{array}{lll}
3 & 2 & 0 \\
2 & 2 & 1 \\
0 & 1 & 0
\end{array}\right] \text { and }\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

2. Find the matrix of the quadratic form. Assume \mathbf{x} is in \Re^{n}.
a. $\quad 3 x_{1}^{2}-8 x_{1} x_{2}+2 x_{2}^{2}$
b. $\quad 2 x_{1}^{2}-6 x_{1} x_{2}$
c. $\quad 7 x_{1}^{2}+4 x_{2}^{2}-9 x_{3}^{2}-8 x_{1} x_{2}+6 x_{1} x_{3}-108 x_{2} x_{3}$
3. Make a change of variable, $\mathrm{x}=$ Py that transforms the quadratic form $x_{1}^{2}+6 x_{1} x_{2}+x_{2}^{2}$ into a quadratic form with no cross-product term. Give P and the new quadratic form.
4. Make a change of variable, $x=$ Py that transforms the quadratic form

$$
4 x_{1}^{2}+4 x_{2}^{2}+4 x_{3}^{2}+4 x_{4}^{2}+3 x_{1} x_{2}+3 x_{3} x_{4}-4 x_{1} x_{4}+4 x_{2} x_{3}
$$

into a quadratic form with no cross-product term. Give P and the new quadratic form.

