Give complete solutions to the following problems. Be sure to provide all the necessary steps to support your answers.

1. Orthogonally diagonalize the given matrices, giving an orthogonal matrix P and a diagonal matrix D
a. $\quad\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]$
b. $\quad\left[\begin{array}{lll}1 & 1 & 5 \\ 1 & 5 & 1 \\ 5 & 1 & 1\end{array}\right] \cdot \lambda=-4,4,7$
2. Find a change of variable $\mathbf{x}=$ Py that transforms the quadratic form from $\mathbf{x}^{\mathrm{T}} \mathbf{x}$ into $\mathbf{y}^{\mathrm{T}} \mathbf{y}$. $Q(x)=3 x_{1}^{2}+2 x_{2}^{2}+2 x_{3}^{2}+2 x_{1} x_{2}+2 x_{1} x_{3}+4 x_{2} x_{3}=5 y_{1}^{2}+2 y_{2}^{2}$
3. Find (a) the maximum value of $\mathrm{Q}(\mathbf{x})$ subject to the constraint $\mathbf{x}^{\mathrm{T}} \mathbf{x}=1$, (b) a unit vector $\mathbf{u}$ where this maximum is attained, and (c) the maximum of $\mathrm{Q}(\mathbf{x})$ subject to the constraints $\mathbf{x}^{\mathrm{T}} \mathbf{x}=1$ and $\mathbf{x}^{\mathrm{T}} \mathbf{u}=0$.

$$
Q(x)=3 x_{1}^{2}+3 x_{2}^{2}+5 x_{3}^{2}+6 x_{1} x_{2}+2 x_{1} x_{3}+2 x_{2} x_{3}
$$

4. Let $Q(x)=7 x_{1}^{2}+x_{2}^{2}+7 x_{3}^{2}-8 x_{1} x_{2}-4 x_{1} x_{3}-8 x_{2} x_{3}$ which $\mathrm{Q}(\mathbf{x})$ is maximized, subject to $\mathbf{x}^{\mathrm{T}} \mathbf{x}=1$.
[Hint: The eigenvalues of the matrix of the quadratic form Q are 9 and -3.]
