Chapter 6 - Photosynthesis

Sunlight as an Energy Source

Photosynthesis

• The synthesis of organic molecules from inorganic molecules using the energy of light

Sites of Photosynthesis in Plants

- CO₂ enters through stomata to mesophyll to chloroplasts
- O₂ exits through stomata

Chloroplast

 An organelle that specializes in photosynthesis in plants and many protists

Chloroplast close up

- •Double membrane surrounds stroma
 - Semifluid matrix
 - •Sugars (glucose) built here
- •Third membrane thylakoids in stacks called grana
 - Chlorophyll and other
 pigments are found here
 Pigments absorb solar
 - energy

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

mesophyll cell

chloroplast

grana

stroma

Overview of Photosynthesis

- 1. Light-dependent reactions (thylakoid membrane)
 - Light energy is transferred to ATP and NADPH
 - Water molecules are split, releasing O₂
- 1. Light-independent reactions (stroma)
 - Energy in ATP and NADPH drives synthesis of glucose and other carbohydrates from CO₂ and water

2 reactions in Photosynthesis

- 1. Light-dependent reactions
- In thylakoid membrane
- Chlorophyll (the main pigment) absorbs solar energy
- Electrons get excited!
- ATP produced
- NADP⁺ to NADPH

2 reactions in Photosynthesis

- 2. Light-independent reactions (Calvin cycle)
- Occur in stroma
- CO₂ taken up
- ATP and NADPH used to form carbohydrate from CO₂

http://www.youtube.com/v/C1_u ez5WX1o

Light-Dependent Reactions: 1. Pigments

Pigments in thylakoids absorb solar energy

- Only about 42% of the solar radiation hits the Earth's surface
 - Ozone layer
 - Water vapor
- Vision and photosynthesis are adapted to use the wavelengths that hit the Earth!

Light-Dependent Reactions: 1. Pigments

- Photosynthesis uses wavelengths of 380-750 nm
- Color you see are the wavelengths *not* absorbed
 why the ocean is blue and leaves are green!!!

Chlorophyll (a & b)

- shortset wavelengths trighest energy) samplest energy samplest e
- The most common photosynthetic pigment
- Absorbs violet and red light (appears green)
- Carotenoids an accessory pigment found in photosynthesizers

Chlorophylls cover up other pigments that ARE there.

When chlorophylls no longer produced, we see carotenoids

- Warm weather; more daylight hours
- Much chlorophyll is produced.
- Leaf absorbs all colors of light but green.

 Cool weather; fewer daylight hours

- Little chlorophyll is produced.
- Leaf absorbs all colors but yellow to orange.

We see reflected green light.

© Digital Vision/Getty RF

We see reflected

vellow to orange light.

© Digital Vision/Getty RF

Why are accessory pigments important???

C Absorption spectra of a few photosynthetic pigments. Line color indicates the characteristic color of each pigment.

The Light Reactions – 2. The electron pathway

- 2 photosystems used
 - PS II & PS I
 - Pigment complexes & e- acceptor

move through a second electron

transfer chain, then combine with

NADP+ and H+, NADPH forms,

H H+ flow causes the ATP synthases to attach phosphate to ADP. so ATP forms in the stroma.

- C Brooks/Cole, Cengage Learning

oxygen leaves the cell as O2.

causes H+ to be pumped from sociate into oxygen and hydrothe stroma into the thylakoid gen ions (photolysis). The compartment. An H+ gradient

forms across the membrane.

- e- move down e- transport chain
- PS II first one discovered
- PSI NADP⁺ becomes NADPH

Where do replacement electrons come from???

The Light Reactions: 3. Replacing Lost Electrons

- Electrons lost from photosystem II are replaced by splitting of water molecules
 - O₂ & H⁺ ions released

A Light energy drives electrons out of photosystem II.

B Photosystem II pulls replacement electrons from water molecules, which dissociate into oxygen and hydrogen ions (photolysis). The oxygen leaves the cell as O₂. C Electrons from photosystem II enter an electron transfer chain.

D Energy lost by the electrons as they move through the chain causes H+ to be pumped from the stroma into the thylakoid compartment. An H+ gradient forms across the membrane. E Light energy drives electrons out of photosystem I, which accepts replacement electrons from electron transfer chains.

F Electrons from photosystem I move through a second electron transfer chain, then combine with NADP+ and H+. NADPH forms. **G** Hydrogen ions in the thylakoid compartment are propelled through the interior of ATP synthases by their gradient across the thylakoid membrane.

H H+ flow causes the ATP synthases to attach phosphate to ADP, so ATP forms in the stroma.

The Light Reactions: 4. The electron transport chain

- Organized arrays of enzymes, coenzymes, and other proteins that accept and donate electrons in a series
 - Energy released at each "step".
 - H⁺ gradient
 - Efficient transfer of e-

Thylakoid membrane

A Light energy drives electrons out of photosystem II.

B Photosystem II pulls replacement electrons from water molecules, which dissociate into oxygen and hydrogen ions (photolysis). The oxygen leaves the cell as O₂. C Electrons from photosystem II enter an electron transfer chain.

D Energy lost by the electrons as they move through the chain causes H+ to be pumped from the stroma into the thylakoid compartment. An H+ gradient forms across the membrane. E Light energy drives electrons out of photosystem I, which accepts replacement electrons from electron transfer chains.

F Electrons from photosystem I move through a second electron transfer chain, then combine with NADP+ and H+. NADPH forms.

G Hydrogen ions in the thylakoid compartment are propelled through the interior of ATP synthases by their gradient across the thylakoid membrane.

H H+ flow causes the ATP synthases to attach phosphate to ADP, so ATP forms in the stroma.

The Light Reactions: 5. Harvesting Electron Energy

- ATP Production
 - ATP synthase complex is also on thylakoid membrane
 - Many H⁺ in thylakoid space
 - Water split
 - H⁺ pumped in from stroma
 - H⁺ gradient formed
 - Where do H⁺ want to go???

Light reactions of Photosynthesis

A Light energy drives electrons out of photosystem II.

B Photosystem II pulls replacement electrons from water molecules, which dissociate into oxygen and hydrogen ions (photolysis). The oxygen leaves the cell as O₂.

Brooks/Cole, Cengage Learning

C Electrons from photosystem II enter an electron transfer chain.

D Energy lost by the electrons as they move through the chain causes H+ to be pumped from the stroma into the thylakoid compartment. An H+ gradient forms across the membrane. E Light energy drives electrons out of photosystem I, which accepts replacement electrons from electron transfer chains.

F Electrons from photosystem I move through a second electron transfer chain, then combine with NADP+ and H+. NADPH forms. G Hydrogen ions in the thylakoid compartment are propelled through the interior of ATP synthases by their gradient across the thylakoid membrane.

H H+ flow causes the ATP synthases to attach phosphate to ADP, so ATP forms in the stroma.

ATP forms in the stroma when H⁺ ions travel through ATP synthase

Animation: Light-dependent reactions

Copyright © The McGraw-Hill Companies, Inc.

Light-Independent Reactions: The Calvin Cycle – making sugars!

Calvin cycle

- Rxns that build sugars in stroma
- Powered by ATP & NADPH
- End product is glucose: C₆H₁₂O₆

The Calvin Cycles' 3 Steps

- 1. Carbon dioxide fixation
- 2. Carbon dioxide reduction
- 3. Regeneration of 1st substrate (RuBP)
- 1. Carbon dioxide fixation
 - Enzyme rubisco attaches CO₂ to RuBP forming 6 carbon molecule
 - 6 carbon molecule splits into two 3 carbon molecules (PGA)

A Six CO₂ in air spaces inside of a leaf diffuse into a photosynthetic cell. Rubisco attaches each to a RuBP molecule. The resulting intermediates split, so twelve molecules of PGA form.

B Each PGA molecule gets a phosphate group from ATP, plus hydrogen and electrons from NADPH. Twelve intermediate molecules (PGAL) form.

C Two of the PGAL combine and form one molecule of glucose. The glucose may enter reactions that form other carbohydrates, such as sucrose and starch.

Brooks/Cole, Cengage Learning

The Calvin Cycles' 3 Steps

- 1. Carbon dioxide fixation
- 2. Carbon dioxide reduction
- 3. Regeneration of 1st substrate (RuBP)
- 2. Carbon dioxide reduction
 - PGA converted into PGAL (G3P) using NADPH (for H) and ATP (energy)

A Six CO₂ in air spaces inside of a leaf diffuse into a photosynthetic cell. Rubisco attaches each to a RuBP molecule. The resulting intermediates split, so twelve molecules of PGA form.

B Each PGA molecule gets a phosphate group from ATP, plus hydrogen and electrons from NADPH. Twelve intermediate molecules (PGAL) form.

C Two of the PGAL combine and form one molecule of glucose. The glucose may enter reactions that form other carbohydrates, such as sucrose and starch.

© Brooks/Cole, Cengage Learning

 PGAL (G3P) can become glucose

The Calvin Cycles' 3 Steps

- 1. Carbon dioxide fixation
- 2. Carbon dioxide reduction
- Regeneration of 1st substrate (RuBP)
- 3. Regeneration of RuBP
 - PGAL (G3P) used to reform RuBP
 - Uses ATP

A Six CO₂ in air spaces inside of a leaf diffuse into a photosynthetic cell. Rubisco attaches each to a RuBP molecule. The resulting intermediates split, so twelve molecules of PGA form.

B Each PGA molecule gets a phosphate group from ATP, plus hydrogen and electrons from NADPH. Twelve intermediate molecules (PGAL) form.

C Two of the PGAL combine and form one molecule of glucose. The glucose may enter reactions that form other carbohydrates, such as sucrose and starch.

© Brooks/Cole, Cengage Learning

Calvin Cycle animation

Inputs and Outputs of the Calvin-Benson Cycle

@ Brooks/Cole, Cengage Learning

Figure 6.9 The fate of G3P (PGAL)

Other types of Photosynthesis

- Plants in different habitats photosynthesize differently
 - Moderate light and rainfall = C₃ plants

Other types of Photosynthesis – preventing water loss!

•Hot and dry climates = C_4 plants

•To preserve water: Stomata closes – limits CO_2 uptake, water loss; traps O_2

•There's a problem!!!

• O_2 competes with CO_2 for rubisco – so less C_3 would be produced in Calvin Cycle if photosynthesis were the same as in C_3 plants (in the

Other types of Photosynthesis – preventing water loss!

- C₄ plants do it differently!
- Rxns are divided by space! CO₂ is fixed in mesophyll cells FIRST!!!
- •Fixed carbon then enters bundle sheath cells for Calvin cycle separated from O_2

Differences between C₃ and C₄ plants – a summary

- C₃ plants
 - Calvin cycle occurs in the mesophyll cells
 - CO₂ is fixed as C₃
 - Advantageous in moderate weather
- C₄ plants
 - CO₂ is fixed in mesophyll cells as C₄
 - Calvin cycle occurs in bundle sheath cells, away from oxygen
 - Advantageous in hot, dry weather

Other types of photosynthesis (Inc. Permission required for reproduction or display.

The Spinach Battery!!!

