Ninth Edition

Biology of Marine Life

James L. Sumich I John F. Morrissey

Chapter 2

Patterns of Associations

This chapter presents three commonly used criteria for classifying marine organisms:

- 1. geographic distribution
- 2. evolutionary interrelationships
- 3. trophic interactions

1. Spatial Distribution – some terms!

Pelanic = found in the water column

2. Evolutionary Relationships and Taxonomic Classification Some more terms:

- Evolution
- Natural selection Adaptive trait

Natural Selection/Evolution Example

Our society is getting taller. Why is this so? Read this article to get an idea!

http://www.timesonline.co.uk/tol/news/uk/article532535.ece

What's the adaptive trait? Or, in other words, what trait is being selected for in this "habitat"? Can this change???

Mutations

i)

Adaptive Trait Populations evolve, individuals don't!

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Cellular

Fission (

10

@ Brooks/Cole, Cengage Learning

A Early Prophase

Mitosis begins. In the nucleus, the chromatin begins to appear grainy as it organizes and condenses. The centrosome is duplicated.

B Prophase

The chromosomes become visible as discrete structures as they condense further. Microtubules assemble and move one of the two centrosomes to the opposite side of the nucleus, and the nuclear envelope breaks up.

The nuclear envelope is gone, and the chromosomes are at their most condensed. Microtubules of the bipolar spindle assemble and attach sister chromatids to opposite spindle poles.

D Metaphase

All of the chromosomes are aligned midway between the spindle poles. Microtubules attach each chromatid to one of the spindle poles, and its sister to the opposite pole.

E Anaphase

Motor proteins moving along spindle microtubules drag the chromatids toward the spindle poles, and the sister chromatids separate. Each sister chromosome. is now a separate chromosome.

F Telophase

The chromosomes reach the spindle poles and decondense. A nuclear envelope begins to form around each cluster; new plasma membrane may assemble between them. <u>Micosis</u> ower.

CC

)

Iblishers, LLC (www.jbpub.com)

Why Sex?

An adaptive trait tends to spread more quickly through a sexually reproducing population than through an asexually reproducing one

C Brooks/Cole, Cengage Learning

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Evolutionary Relationships and Taxonomic Classification Changes in individuals (mutations) which become adaptive traits leads to changes in populations (evolution) over time through natural selection...phew!!!

Fig. 2.4 Tail slap of a killer whale directed at its sea lion prey.

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

able 2.1

Evolutionary Adaptations

Differences in populations can lead to different species!

A Comparison of Foraging-Related Differences Between Transient and Resident Killer Whales of the Pacific Northwest

Character	Residents	Transients
Group size	Large (3-80)	Small (1–15)
Dive pattern	Short and consistent	Long and variable
Temporal	With salmon	Unpredictable
occurrence	runs	
Foraging areas	Deep water	Shallow water
Vocalize when hunting?	Frequently	Less frequently
Prey type	Salmon and other fishes	Mammals
Relative prey size	Small	Large
Prey sharing	Usually no	Usually yes

Modified from Baird et al., 1992.

Reproductive Isolation Reproductive isolating mechanisms evolve when gene flow between populations stops

Divergences may lead to new species

: Publishers, LLC (www.jbpub.com)

© Cengage Learning

What is a

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Taxonomy and Classification

Taxonomy

The science of naming and classifying species

We group species based on what we know about their evolutionary relationships.

Fig. 2.5 A cladogram illustrating the relationships between Sirenians and elephants and their close relatives based on differences in mitochondrial DNA. Time scale for speciation events estimated from rates of DNA change.

Linnaean Classification

Carolus Linneaus ranked organisms into ever more inclusive categories

- Species
- 🖛 Genus
- Family
- Order
- 🖛 Class
- Phylum
- Kingdom

Why scientific naming???

Domain (Eukarya, Archaea, Bacteria) – we won't be using this here!!! © 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Bartlett Publishers, LLC (www.jbpub.com)

6	Taxonomic Classification of Some Marine Organisms									
	Taxonomic category									
24	Organism	Kingdom	Phylum/Division	Class	Order	Family	Genus	Species		
8	Blue whale	Animalia	Chordata	Mammalia	Cetacea	Balaenopteridae	Balaenoptera	musculus		
卍	Dolphin	Animalia	Chordata	Mammalia	Cetacea	Delphinidae	Delphinus	delphis		
	Dolphinfish	Animalia	Chordata	Osteichthyes	Teleostei	Coryphaenidae	Coryphaena	hippurus		
	Copepod	Animalia	Arthropoda	Crustacea	Calanoida	Calanidae	Calanus	finmarchicus		
	Mangrove	Plantae	Anthophyta	Dicotyledones	Laminales	Avicenniaceae	Avicennia	germinans		
	Tintinnid	Protista	Ciliophora	Ciliata	Spirotricha	Tintinnidae	Halteria	grandinella		

What's more closely related to what???

I love your book, except...

Evolutionary Relationships and Taxonomic Classification Eukaryotic cell Cell interior is divided into functional compartments, including a nucleus

Prokaryotic cell Small, simple cells without a nucleus DNA in nucleoid region

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Basic Structure of Cell Membranes

http://www.youtube.com/v/GW0lqf4Fqpg

Organelles of Eukaryotic Cells

4 categories of organelles:

- 1. Nucleus and ribosomes
- 2. Endomembrane system
- 3. Energy-related
- 4. Cytoskeleton

1. Nucleus & Ribosomes

What's the function of the nucleus?

keeps eukaryotic DNA away from potentially damaging reactions in the cytoplasm

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

1. Nucleus & Ribosomes

Bartlett Publishers, LLC (www.jbpub.com)

2. The Endomembrane System

A series of interacting organelles between the nucleus and the plasma membrane

- Nuclear envelope already talked about!
- Endoplasmic reticulum (ER)
- Golgi apparatus
- Vesicles

The Endoplasmic Reticulum Endoplasmic reticulum (ER) Two kinds of endoplasmic reticulum

- Rough ER (with ribosomes) that modifies proteins
- Smooth ER (no ribosomes) makes lipids, breaks down carbohydrates and lipids, detoxifies poisons

Golgi Apparatus

- finish polypeptides and lipids delivered by the ER in vesicles
- Packages finished products in vesicles

Vesicles

 Small, membrane-enclosed saclike organelles that store or transport substances

http://www.youtube.com/v/cnK7RT1q0bA

3. Energy-related organelles Chloroplasts function in photosynthesis in plants and some types of algae

- Use solar energy to synthesize carbohydrates

Eukaryotic cells make most of their ATP in mitochondria. Do plants have mitochondria?

http://www.hybridmedicalanimation.com/pages/chloroplast.html

4. Cytoskeleton

Eukaryotic cells have a network of website the set interconnected protein filaments and tubules

- Maintains cell shape
- Allows cell and organelles to move (with motor proteins

Prokaryotes

Kingdom Bacteria

Kingdom Archaea

Single-celled

No nucleus or organelles – MOST IMPORTANT DISTINCTION!!!

Include producers, consumers, decomposers

© 2006 Thomson Higher Education

© 2006 Brooks/Cole - Thon

DNA is inside a nucleus

Kingdom Protista **Plantlike, animallike, fungilike**

The protists are the simplest eukaryotes! The "catchall" category!

© 2006 Brooks/Cole - Thomson

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Kingdom Protista

Protists

© 2006 Brooks/Cole - Thomson

Kingdom Protista

Protists

© 2006 Brooks/Cole - Thomson

blishers, LLC (www.jbpub.com)

Kingdom Fungi

- Most are multicelled
- Consumers and decomposers
- Extracellular digestion and absorption
- Cell walls made of chitin
- Why did everyone want to invite the mushroom to the party?

Kingdom Fungi

© 2006 Brooks/Cole - Thomson

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Kingdom Fungi

shers, LLC (www.jbpub.com)

Kingdom Plantae All are multicelled

- Most are photosynthetic producers
- Are the food base for terrestrial communities
- Cellulose cell walls

Kingdom Plantae

© 2006 Brooks/Cole - Thomson

w 2007 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Kingdom Plantae

blishers, LLC (www.jbpub.com)

© 2006 Brooks/Cole - Thomson

Kingdom Animalia

- **Multicelled consumers**
- Move about during at least some stage of their life

Kingdom Animalia

© 2006 Thomson Higher Education

Multicelled consumers!!!

3. Trophic (what eats what) Relationships Harvesting Energy

- Autotrophs (photosynthesizers & chemosynthesizers producers)
- Heterotrophs (consumers & decomposers)

Energy Transfer in Cells

Trophic Relationships Food Chains and Food Webs

 Both energy (one-way direction) and matter (biogeochemical cycle) flow through ecosystems.

Trophic Relationships FOOD Which are heterotrophs? What groups are missing??? Food Webs

Secondary consumers CARNIVORES

Primary consumers HERBIVORES - what's the land equivalent??? Primary producers

Food Chains and FOOD WEBS

Trophic Relationships

The General Nature of Marine Life

Fig. 2.15 Major biotic components of a marine ecosystem with their interconnecting paths of energy and nutrient exchange.

Trophic Relationships – Symbiosis

