Meiosis and Sexual Reproduction

Impacts, Issues: Why Sex?

 An adaptive trait tends to spread more quickly through a sexually reproducing population than through an asexually reproducing one

C Brooks/Cole, Cengage Learning

Introducing Alleles

- Asexual reproduction produces genetically identical copies of a parent (clones)
- Sexual reproduction introduces variation in the combinations of traits among offspring

Genes and Alleles

- Genes are regions in an organism's DNA that encode information about heritable traits
 - In sexual reproduction, pairs of genes are inherited on pairs of chromosomes, one maternal and one paternal
- Alleles are different forms of the same gene
 - Offspring of sexual reproducers inherit new combinations of alleles, the basis of traits

Sexual Reproduction Shuffles Alleles

- Through sexual reproduction, offspring inherit new combinations of alleles (a unique molecular form of the same gene), which leads to variations in traits
 - For example, the "eye color gene" may say blue or brown!
- This variation in traits is the basis for evolutionary change – you can get different kinds of alleles in sexual reproduction!!!

Key Concepts Sexual vs Asexual Reproduction

- In asexual reproduction, one parent transmits its genetic information to offspring
- In sexual reproduction, offspring typically inherit information from two parents who differ in their alleles
- Alleles are different forms of the same gene; they specify different versions of a trait

What Meiosis Does

Meiosis

 A nuclear division mechanism that precedes cytoplasmic division of immature reproductive cells in sexually-reproducing eukaryotic species

Halving the Diploid Number

- A diploid cell has two nonidentical copies of every chromosome (except XY sex chromosomes)
 - Humans have 23 pairs of homologous chromosomes
- Meiosis in germ cells halves the diploid number of chromosomes (2n) to the haploid number (n), producing haploid gametes
 - Eggs and sperm have 23 unpaired chromosomes

Gamete Production

Gametes are produced in specialized reproductive structures or organs

Restoring the Diploid Number

- Human gametes (eggs and sperm) have 23 chromosomes – one of each homologous pair
- The diploid number (23 pairs) is restored at fertilization, when two haploid gametes fuse and form a diploid zygote, the first cell of a new individual

Human Chromosomes: Homologous Pairs

Two Divisions, Not One

- In meiosis, DNA is replicated once and divided twice (meiosis I and meiosis II), forming four haploid nuclei
- In meiosis I, each duplicated homologous chromosome is separated from its partner
- In meiosis II, sister chromatids are separated

Two Divisions, Not One

Meiosis I

Meiosis II

Visual Tour of Meiosis

Meiosis I

Visual Tour of Meiosis

Animation: Meiosis step-by-step

http://www.youtube.com/v/uh7c8YbYGqo

Key Concepts Stages of Meiosis

- Meiosis reduces the chromosome number
- Meiosis occurs only in cells set aside for sexual reproduction
- Meiosis sorts a reproductive cell's chromosomes into four haploid nuclei, which are distributed to descendent cells by cytoplasmic division

How Meiosis Introduces Variation in Traits

 Crossovers and the random sorting of chromosomes in meiosis introduce novel combinations of alleles into gametes, resulting in new combinations of traits among offspring

Crossing Over in Prophase I

Crossing over

- The process by which a chromosome and its homologous partner exchange heritable information in corresponding segments
- Occurs during condensation in prophase I

Crossing Over Between Homologous Chromosomes

Animation: Crossing over

http://www.youtube.com/v/op7Z1Px8oO4

Segregation of Chromosomes into Gametes

- Homologous chromosomes can be attached to either spindle pole in prophase I, so each homologue can be packaged into either one of the two new nuclei
- Random assortment produces 10²³ (8,388,608) possible combinations of homologous chromosomes

Random Assortment

© Brooks/Cole, Cengage Learning

Animation: Random alignment (assortment)

http://www.youtube.com/v/u-jbIS3EPnY

Key Concepts: Chromosome Recombinations and Shufflings

- During meiosis, each pair of maternal and paternal chromosomes swaps segments
- Then, each chromosome is randomly segregated into one of the new nuclei
- Both processes lead to novel combinations of alleles – and traits – among offspring

http://www.youtube.com/v/D1_-mQS_FZ0