Biotechnology

This isn't a baaaaaaaddd chapter!!! I'm funnier the 2nd time!!!

Genetic Engineering

- Genetic engineering involves manipulating genes for practical purposes
 - **Gene cloning** leads to the production of multiple identical copies of a gene-carrying piece of DNA
 - Recombinant DNA is formed by joining DNA sequences from two different sources

Enzymes are used to "cut and paste" DNA in order to recombine it!!!

- Restriction enzymes cut DNA at specific sequences
 - Each enzyme binds to DNA at a different restriction site
 - Many restriction enzymes make staggered cuts that produce **restriction fragments** with single-stranded ends called "sticky ends"
 - Fragments with complementary sticky ends can associate with each other, forming recombinant DNA
- DNA ligase joins DNA fragments together

PLAY

Animation: Restriction Enzymes

Reverse transcriptase can help make genes for cloning

- Complementary DNA (cDNA) is used to clone eukaryotic genes
 - mRNA from a specific cell type is the template
 - Reverse transcriptase produces a DNA strand from mRNA
 - DNA polymerase produces the second DNA strand

GENETICALLY MODIFIED ORGANISMS

Recombinant cells and organisms can mass produce gene products

 Cells and organisms containing cloned genes are used to manufacture large quantities of gene products

TABLE 12-6 SOME PROTEIN P	12-6 SOME PROTEIN PRODUCTS OF RECOMBINANT DNA TECHNOLOGY			
Product	Made In	Use		
Human insulin	E. coli	Treatment for diabetes		
Human growth hormone (HGH)	E. coli	Treatment for growth defects		
Epidermal growth factor (EGF)	E. coli	Treatment for burns, ulcers		
Interleukin-2 (IL-2)	E. coli	Possible treatment for cancer		
Bovine growth hormone (BGH)	E. coli	Improving weight gain in cattle		
Cellulase	E. coli	Breaking down cellulose for animal feeds		
Taxol	E. coli	Treatment for ovarian cancer		
Interferons (alpha and gamma)	S. cerevisiae; E. coli	Possible treatment for cancer and viral infections		
Hepatitis B vaccine	S. cerevisiae	Prevention of viral hepatitis		
Erythropoietin (EPO)	Mammalian cells	Treatment for anemia		
Factor VIII	Mammalian cells	Treatment for hemophilia		
Tissue plasminogen activator (TPA)	Mammalian cells	Treatment for heart attacks and some strokes		

DNA technology has changed the pharmaceutical industry and medicine

Products of DNA technology

- Therapeutic hormones
 - Insulin to treat diabetes
 - Human growth hormone to treat dwarfism
- Diagnosis and treatment of disease
 - Testing for inherited diseases
 - Detecting infectious agents such as HIV
- Vaccines
 - Stimulate an immune response by injecting
 - Protein from the surface of an infectious agent
 - A harmless version of the infectious agent

- **CONNECTION** organisms a
- Genetically mo one or more gen
- Transgenic org gene from anoth
- GM plants
 - Resistance to
 - Resistance to
 - Improved nuti
- GM animals
 - Improved qua
 - Production of

itain eans

www.eclectech

Cloning

Clones

- Exact copies of a molecule, cell, or individual
- Occur in nature by asexual reproduction or embryo splitting (identical twins)

Reproductive cloning technologies produce an exact copy (clone) of an individual

Reproductive cloning has valuable application but human reproductive cloning raises ethical issues

- Cloned animals can show differences from their parent due to a variety of influences during development
- Reproductive cloning is used to produce animals with desirable traits
 - Agricultural products
 - Therapeutic agents
 - Restoring endangered animals
- Human reproductive cloning raises ethical concerns

Reproductive Cloning Technologies

Somatic cell nuclear transfer (SCNT)

- Nuclear DNA of an adult is transferred to an enucleated egg
- Egg cytoplasm reprograms differentiated (adult) DNA to act like undifferentiated (egg) DNA
- The hybrid cell develops into an embryo that is genetically identical to the donor individual

Somatic Cell Nuclear Transfer (SCNT)

A cow egg is held in place by suction through a hollow glass tube called a micropipette. The polar body (Section 10.5) and chromosomes are identified by a purple stain.

B A micropipette punctures the egg and sucks out the polar body and all of the chromosomes. All that remains inside the egg's plasma membrane is cytoplasm.

C A new micropipette prepares to enter the egg at the puncture site. The pipette contains a cell grown from the skin of a donor animal.

skin cell

E After the pipette is withdrawn, the donor's skin cell is visible next to the cytoplasm of the egg. The transfer is complete.

F The egg is exposed to an electric current. This treatment causes the foreign cell to fuse with and empty its nucleus into the cytoplasm of the egg. The egg begins to divide, and an embryo forms. After a few days, the embryo may be transplanted into a surrogate mother.

A Clone Produced by SCNT

Therapeutic cloning can produce stem cells with great medical potential

- Stem cells can be induced to give rise to differentiated cells
 - Embryonic stem cells can differentiate into a variety of types
 - Adult stem cells can give rise to many but not all types of cells
- Therapeutic cloning can supply cells to treat human diseases
- Research continues into ways to use and produce stem cells

Gene Therapy & DNA Profiling

Gene therapy may someday help treat a varietyo of diseases

- Gene therapy aims to treat a disease by supplying a functional allele
- One possible procedure
 - Clone the functional allele and insert it into a virus
 - Use the virus to deliver the gene to an affected cell type from the patient, such as a bone marrow cell
 - Viral DNA and the functional allele will insert into the patient's chromosome
 - Return the cells to the patient for growth and division

The analysis of genetic markers can produce a **DNA** profile

- **DNA profiling** is the analysis of DNA fragments to determine whether they come from a particular individual
 - Compares genetic markers from noncoding regions that show variation between individuals
 - Involves amplification (copying) of markers for analysis – PCR!!!
 - Sizes of amplified fragments are compared

The PCR method is used to amplify DNA sequences

- Polymerase chain reaction (PCR) is a method of amplifying a specific segment of a DNA molecule. A way to make a DNA factory!!!
- Advantages of PCR
 - Can amplify DNA from a small sample
 - Results are obtained rapidly
 - Reaction is highly sensitive, copying only the target sequence

Gel electrophoresis sorts DNA molecules by size

- Gel electrophoresis separates DNA molecules based on size
 - DNA sample is placed at one end of a porous gel
 - Current is applied and DNA molecules move from the negative electrode toward the positive electrode
 - Shorter DNA fragments move through the gel pores more quickly and travel farther through the gel
 - DNA fragments appear as bands, visualized through staining or detecting radioactivity or fluorescence
 - Each band is a collection of DNA molecules of the same length

DNA profiling has provided evidence in many forensic investigations

Forensics

- Evidence to show guilt or innocence
- Establishing family relationships
 - Paternity analysis
- Identification of human remains
 - After tragedies such as the September 11, 2001, attack on the World Trade Center
- Species identification
 - Evidence for sale of products from endangered species

Genomics

Genomics is the scientific study of whole genomes

- Genomics is the study of an organism's complete set of genes and their interactions (the genome)
 - Initial studies focused on prokaryotic genomes
 - Many eukaryotic genomes have since been investigated
- Evolutionary relationships can be elucidated
 - Genomic studies showed a 96% similarity in DNA sequences between chimpanzees and humans

TABLE 12.17 SOME IMP	SOME IMPORTANT COMPLETED GENOMES			
Organism	Year Completed	Size of Genome (in Base Pairs)	Approximate Number of Genes	
Haemophilus influenzae (bacterium)) 1995	1.8 million	1,700	
Saccharomyces cerevisiae (yeast)	1996	13 million	6,200	
Escherichia coli (bacterium)	1997	4.6 million	4,400	
Caenorhabditis elegans (nematode)	1998	97 million	19,000	
Drosophila melanogaster (fruit fly)	2000	180 million	13,700	
Arabidopsis thaliana (mustard plant) 2000	118 million	25,500	
Mus musculus (mouse)	2001	2.6 billion	22,000	
Oryza sativa (rice)	2002	430 million	60,000	
Homo sapiens (humans)	2003	3.2 billion	21,000	
Rattus norvegius (lab rat)	2004	2.8 billion	25,000	
Pan troglodytes (chimpanzee)	2005	3.1 billion	22,000	
<i>Macaca mulatta</i> (macaque)	2007	2.9 billion	22,000	

Copyright @ 2009 Pearson Education, Inc.

The Human Genome Project revealed that mosp of the human genome does not consist of genes

Goals of the Human Genome Project (HGP)

- To determine the nucleotide sequence all DNA in the human genome
- To identify the location and sequence of every human gene

The Human Genome Project revealed that mosp of the human genome does not consist of genes

- Results of the Human Genome Project
 - Humans have 21,000 genes in 3.2 billion nucleotide pairs
 - Only 1.5% of the DNA codes for proteins, tRNAs, or rRNAs
 - The remaining 98.5% of the DNA is "junk DNA"
 - If 98% of our genetic information (or "genome") isn't coding for protein, what is it for?
 - Intergenic DNA seems to play a key role in regulation, that is, controlling which genes are turned "on" or "off" at any given time.
 - Other functions of junk DNA? They are currently being explored!

Proteomics is the scientific study of the full set of proteins encoded by a genome

Proteomics

- Studies the proteome, the complete set of proteins specified by a genome
- Investigates protein functions and interactions
- The human proteome may contain 100,000 proteins

EVOLUTION: Genomes hold clues to the evolutionary divergence of humans and chimps

- Comparisons of human and chimp genomes
 - Scientists have sequenced the genome of the chimpanzee and found that humans are 96 percent similar to the great ape species.
 - Genes showing rapid evolution in humans
 - Genes for defense against malaria and tuberculosis
 - Gene regulating brain size (The size of human brain tripled over a period of 2 million years)