Moving from organisms to communities and ecosystems and the biosphere -

Ecology

it's the scientific study of the relation of living organisms to each other and their surroundings.

Population ecology is the study of how and why populations change

- Population
 - A group of individuals of a single species that occupy the same general area
- Individuals in a population
 - Rely on the same resources
 - Are influenced by the same environmental factors
 - Are likely to interact and breed with one another

Communities and Ecosystems

- All communities and ecosystems have certain features in common
- Each type of ecosystem has its own unique structure and dynamics

Human activities can disrupt the balance of

ecosystems

A community includes all the poor organisms inhabiting a particular area

- Biological community
 - An assemblage of populations living close enough together for potential interaction
 - Described by its species composition
- Boundaries of the community vary with research questions
 - Can be a pond
 - Can be the intestinal microbes of a pond organism

Interspecific interactions are \(\bigsip \) fundamental to community structure

- Interspecific interactions
 - Relationships with other species in the community
- Interspecific competition
 - Two different species compete for the same limited resource
 - Squirrels and black bears
 - Compete for acorns

Copyright @ 2009 Pearson Education, Inc.

TABLE 37.2 INTERSPECIFIC INTERACTIONS

Interspecific	Species 1	Species 2	Example
Competition	_	_	Squirrels/black bears
Mutualism	+	+	Hippo/microbes in hippo stomach
Predation	+	_	Crocodile/fish
Herbivory	+	_	Hippo/grasses
Parasites and pathogens	+	_	Heartworm/dog; Salmonella/humans

Trophic structure is a key factor in community dynamics

Trophic structure

 A pattern of feeding relationships consisting of several different levels

Food chain

Sequence of food transfer up the trophic levels

Trophic level Quaternary Hawk consumers Killer whale **Tertiary Snake** Tuna consumers Mouse **Secondary** Herring consumers Grasshopper **Primary** Zooplankton consumers

Plant

Producers

Phytoplankton

A terrestrial food chain

An aquatic food chain

Food chains interconnect, forming food webs

Food web

A network of interconnecting food chains

Ecosystem

- All the organisms in a community as well as the abiotic environment
- The global ecosystem is called the biosphere
 - It is the sum of all the Earth's ecosystems
 - The biosphere is the most complex level in ecology

The biosphere can be divided into different biomes For example, aquatic & terrestrial biomes

- Ecosystem interactions involve living (biotic) communities and nonliving (abiotic) components
 - Biotic components include all organisms
 - Abiotic components include atmospheric gases, energy, nutrients, and water
 - Organisms are affected by both components of their environment
 - Their presence and activities often change the environment they inhabit

Types of Terrestrial biomes

Tropical forests cluster near the equator

- 0
- Several types of **tropical forests** occur in the warm, moist belt along the equator
 - The tropical rain forest is the most diverse ecosystem on Earth
 - Large-scale human destruction of tropical rain forests continues to endanger many species
 - It may also alter world climate

Savannas are grasslands with scattered trees

 Drier, tropical areas and some nontropical areas are characterized by the savanna

Deserts are defined by their dryness

- Deserts are the driest of all terrestrial biomes
 - They are characterized by low and unpredictable rainfall

Spiny shrubs dominate the chaparral

- The chaparral biome is a shrubland with cool, rainy winters and dry, hot summers
 - Chaparral vegetation is adapted to periodic fires

Temperate grasslands include the North American prairie

- Temperate grasslands are found in the interiors of the continents, where winters are cold
 - Drought, fires, and grazing animals prevent trees from growing

Farms have replaced most of North America's temperate grasslands

Broadleaf trees dominate temperate forests

- Temperate broadleaf forests grow where there is sufficient moisture to support the growth of large trees
 - Nearly all of the original broadleaf forests in North America have been drastically altered by agriculture and urban development

Coniferous forests are often dominated by a few species of trees

- The northern coniferous forest, or taiga, is the largest terrestrial biome on Earth
 - The taiga is characterized by long, cold winters and short, wet summers

Long, bitter-cold winters characterize the tundra

- The arctic tundra lies between the taiga and the permanently frozen polar regions
 - It is a treeless biome characterized by extreme cold, wind, and permafrost

Permafrost is continuously frozen subsoil

