Fungi & Plants Domain Eukarya Kingdom Fungi and Kingdom Plantae

Fungal Traits and Classification

- Fungi are heterotrophs that obtain nutrition from their environment by extracellular digestion
 - Most are free-living saprobes
 - Others live on or in other organisms
- They disperse by producing fungal spores
 - Cells or clusters of cells, often with a thick wall

Characteristics of Fungi

- Some fungi live as single cells (yeasts)
- Most are a multicelled (molds, mushrooms)
 - Multicelled fungi grow as a mesh of branching filaments (mycelium)
 - Each filament is one hypha

Animation: Mycelium

Ecology of Fungi

- Some decompose organic wastes and remains
 - Help recycle nutrients in ecosystems
- Some form beneficial partnerships with plants, photosynthetic cells (lichen), or herbivores
- Some are parasites or pathogens

Multicelled Fungi

of one hypha of the mycelium)

© Brooks/Cole, Cengage Learning

Phylogeny and Classification – major fungal groups

- Chytrids and zygote fungi (zygomycetes)
 - No dikaryotic stage
- Sac fungi (ascomycetes) and club fungi (basidiomycetes)
 - Dikaryotic mycelium

Key Concepts **Traits and Classification**

- Fungi are single-celled and multicelled heterotrophs
- They secrete digestive enzymes onto organic matter, then absorb the released nutrients
- They reproduce sexually and asexually by producing spores
- Zygote fungi, club fungi, and sac fungi are major groups. They can be divided based on their spores!!!

The Flagellated Fungi

- Chytrids are the only modern fungi with a life cycle that includes flagellated cells
 - Some feed on organic wastes and remains
 - Some live in guts of herbivores and help digest cellulose
 - Some are parasites

http://www.youtube.com/v/kf9H_RjLla0

A Parasitic Chytrid

• A frog parasite, *Batrachochytrium dendrobatidis*

Zygote Fungi and Relatives

- Only zygote fungi (zygomycetes) produce a thick-walled diploid spore (zygospore) during sexual reproduction
- Zygote fungi form a branching haploid mycelium on organic material, and inside living plants and animals

Typical Zygote Fungi

Rhizopus species

 Include black bread mold, molds that spoil foods, and the fungus that causes zygomycosis

Pilobolus

 Produces specialized spore-bearing hyphae with fluid-filled sacs that blast spores up to 2 meters

http://www.youtube.com/v/PXwLddA4Ctw

Spore Bearing Structures of *Pilobolus*

@ Brooks/Cole, Cengage Learning

http://www.youtube.com/v/9CRNmde0WUc

Sac Fungi—Ascomycetes

- Sac fungi are the most diverse fungal group
 - Some are single cells (yeasts), but in most a haploid mycelium dominates the life cycle
- Sac fungi are the group that most often causes diseases in humans

 Sac fungi that reproduce sexually typically form spores inside an ascus

Asci

 Saclike structures that form on a fruiting body (ascocarp) consisting of dikaryotic hyphae

Ascocarps

© Brooks/Cole, Cengage Learning

Sexual Reproduction

Asexual Reproduction - yeast & multicelled fungus – don't need to know, but it's cool!!!

C Brooks/Cole, Cengage Learning

Cole, Cengage Learning

Human Uses of Sac Fungi

Food and beverages

- Baking yeast and fermentation (*Saccharomyces, Aspergillus*), blue cheese (*Penicillium*)
- Drugs
 - Antibiotics (Penicillium, Cephalosporium)
 - Statins (Aspergillus)
- Natural herbicides and pesticides
 - Arthrobotrys

A Predatory Fungus: Arthrobotrys

© Brooks/Cole, Cengage Learning

Club Fungi—Basidiomycetes

- Club fungi are typically multicelled fungi in which a dikaryotic mycelium dominates the life cycle
- They form sexual spores inside club-shaped cells that develop on a fruiting body (basidiocarp) composed of interwoven dikaryotic hyphae

Club Fungus Life Cycle

Club Fungus Diversity

- Club fungi make the largest and most elaborate fruiting bodies of all fungi
- Club fungi include edible mushrooms (chanterelles), poisonous mushrooms (death cap), and plant pathogens (smuts and rusts)

Club Fungus Diversity

@ Brooks/Cole, Cengage Learning

Key Concepts The Major Groups

- In zygote fungi, which include many molds, the single-celled zygote produces spores by meiosis
- Many sac fungi and club fungi make complex spore-bearing structures such as mushrooms
- Meiosis in cells on these structures produces spores

The Fungal Symbionts

- Fungi form associations with plants and with single-celled photosynthetic species
 - Lichens
 - Mycorrhizae

Lichens

Lichen

- Consists of a fungus and photosynthetic cells
- A symbiotic interaction between a sac fungus (or club fungus) and a green alga or cyanobacterium

Mutualism

A symbiotic interaction that benefits both partners

Lichens

outer layer of fungal cells

d

Animation: Lichens

http://www.youtube.com/v/b0sjFcMnoK0

Mycorrhizae – The Fungus-Root

Mycorrhizae

• A partnership between soil fungi and tree roots

Mycorrhizae

© Brooks/Cole, Cengage Learning

Mycorrhizae Function

- Hyphae of mycorrhizae grow through soil and increase the absorptive area of their partner
- Both partners benefit
 - Fungus concentrates nutrients for plant
 - Plant supplies sugars to the fungus

Benefits of Mycorrhizae

Juniper seedlings without and with mycorrhizae

@ Brooks/Cole, Cengage Learning

Animation: Mycorrhiza

http://www.youtube.com/v/bq1bTduTzC0

Key Concepts Living Together

- Many fungi live on, in, or with other species
- Some live inside plant leaves, stems, or roots
- Others form lichens by living with algae or cyanobacteria

Fungal Infections

- Fungi cause:
 - Histoplasmosis
 - Valley fever
 - Candida ("yeast") infections
 - Ringworm
 - Athlete's foot
 - Ergotism witch hunts!
- Eating some club fungi can be fatal

The Land Plants

Evolution of Land Plants

 Land plants evolved from a lineage of green algae (charophytes) after the ozone layer made life on land possible

@ Brooks/Cole, Cengage Learning

Evolution of Land Plants

- Bryophytes include three early diverging land plant lineages
- Vascular seedless plants evolved next
- The first seed plants were gymnosperms, from which angiosperms (flowering plants) evolved

Evolutionary Tree for Land Plants

seedless vascular plant (fern)

angiosperm (monocot)

bryophyte (moss) s

b gymnosperm (conifer)

C Brooks/Cole, Cengage Learning

Diversity of Modern Land Plants

@ Brooks/Cole, Cengage Learning

Table 23.1 Diversity of Modern Land Plants	
Bryophytes Liverworts Mosses Hornworts	9,000 species 15,000 species 100 species
Seedless Vascular Plants Lycophytes Whisk ferns Horsetails Ferns	1,100 species 7 species 25 species 12,000 species
Gymnosperms Cycads Ginkgos Conifers Gnetopytes	130 species 1 species 600 species 70 species
Angiosperms (Flowering Plants Basal groups (e.g., magnoliids) Monocots Eudicots	9,200 species 80,000 species >180,000 species

Evolutionary Trends Among Plants

 Over time, the spore-producing bodies of plants became larger, more complex, and better adapted to dry habitats

From Haploid to Diploid Dominance

- Plants shifted from gametophyte-dominated life cycle (in bryophytes) to sporophyte-dominated life cycle (in other plants)
 - Gametophyte: Haploid stage that forms gametes by mitosis
 - Sporophyte: Diploid stage that forms spores by meiosis

Animation: Alternation of generations

Life Cycle of Land Plants

@ Brooks/Cole, Cengage Learning

Roots, Stems, and Leaves

- Life on land favored water conserving features
 - Cuticle: Waxy layer that restricts evaporation
 - Stomata: Openings across the cuticle

© Brooks/Cole, Cengage Learning

Roots, Stems, and Leaves

- In vascular plants, a system of vascular tissue reinforced by lignin distributes materials through leaves, stems, and roots of sporophytes
 - **Xylem**: Distributes water and minerals
 - **Phloem**: Distributes products of photosynthesis

Vascular Tissues

Pollen and Seeds

- Bryophytes and seedless plants release spores
- Only seed-bearing vascular plants release pollen grains and seeds
 - Pollen grain: A walled, immature gametophyte that will give rise to the sperm
 - Seed: An embryo sporophyte and some nutritive tissue enclosed inside a waterproof coat

Two Lineages of Seed-Bearing Vascular Plants

Gymnosperms

- Cycads, conifers, ginkgos, and gnetophytes
- Angiosperms (flowering plants)
 - Most modern plants
 - Seeds form inside floral tissue that later develops into a fruit

Dispersal Methods: Spores and Seeds

Cole, Cengage Learning

© Brooks/Cole, Cengage Learning

Evolutionary Trends in Plant Life Cycles

© Cengage Learning

b

The Bryophytes

 Bryophytes include three land plant lineages – liverworts, hornworts, and mosses – with a gametophyte-dominated life-cycle

Characteristics of Bryophytes

- Nonvascular (no xylem or phloem)
- Sperm swim through water to eggs
- The sporophyte forms on, and is nourished by, the dominant gametophyte
- Spores are the dispersal form

Hornworts

Cole, Cengage Learning

http://www.youtube.com/v/jcWYAnmm-QE Moss Life Cycle: *Polytrichum*

Key Concepts Early-Diverging Plant Lineages

- Three plant lineages (mosses, hornworts, and liverworts) are commonly referred to as bryophytes, although they are not a natural group
- The gamete-producing stage dominates their life cycle, and sperm reach the eggs by swimming through droplets or films of water

Evolutionary Trends in Plant Life Cycles

© Cengage Learning

b

Seedless Vascular Plants

- A sporophyte with lignified vascular tissue (xylem and phloem) dominates the life cycle
- Four groups of seedless vascular plants
 - lycophytes, whisk ferns, horsetails, ferns

NO SEEDS, BUT VASCULAR TISSUE!!!

Seedless Vascular Plants

Club moss (Lycopodium), whisk fern (Psilotum), and horsetails (Equisetum)

Brooks/Cole, Cengage Learning

Ferns – No Seeds, Much Diversity

Ferns

- The most diverse seedless vascular plants
- Spores are dispersed from clusters of sporangia (sori) on lower surfaces of frond leaves

Fern Diversity

@ Brooks/Cole, Cengage Learning

Key Concepts Seedless Vascular Plants

- Lycophytes, whisk ferns, horsetails, and ferns have vascular tissues but do not produce seeds
- A large spore-producing body that has internal vascular tissues dominates the life cycle
- As with bryophytes, sperm swim through water to reach eggs

Evolutionary Trends in Plant Life Cycles

b

 Seeds and pollen allowed gymnosperms and angiosperms (flowering plants) to survive and thrive in drier habitats

- Microspores become sperm-producing male gametophytes (pollen grains)
- Megaspores develop into egg-producing female gametophytes inside ovules

Pollen

 Seed plants release pollen grains which allow fertilization to occur even in the absence of environmental water

Seeds

A seed is a mature ovule

 Includes nutritive tissue and a tough seed coat that protects the embryo sporophyte inside the seed from harsh conditions

Gymnosperms— Plants With Naked Seeds

Gymnosperms

- Vascular seed plants with "naked" seeds
- One of the two modern lineages of seed plants
- Gymnosperms include conifers (such as pines), cycads, ginkgos, and gnetophytes
Some Gymnosperms

© Brooks/Cole, Cengage Learning

http://www.youtube.com/v/o6Se_9y68P0

Gymnosperm Life Cycle

Gymnosperms release pollen and seeds

Angiosperms— The Flowering Plants

 Angiosperms are the most diverse plant lineage and the only plants that make flowers and fruits

Keys to Angiosperm Success

- Short life cycles and rapid growth
- Specialized reproductive structures (flowers)
- Specialized pollination and dispersal structures
 - Wind and animal pollinators
 - Fruits that float or stick
 - Seeds that survive animal digestive tracts

Specialized Angiosperm Structures

- A flower is a specialized reproductive shoot
- Seeds develop inside the ovaries (chambers that enclose ovules) of flowers
- After fertilization, an ovary becomes a fruit

Flower Structures – don't worry about for lecture!!!

Pollination and Coevolution

Pollinators

 Animals (such as insects that feed on pollen) move pollen grains from male parts of one flower to female parts of another

Coevolution

 Over time, plants and their animal pollinators jointly evolved; changes in one exerts selection pressure on the other

Flowering Plant Diversity

@ Brooks/Cole, Cengage Learning

Focus on a Flowering Plant Life Cycle

- Flowering plants form eggs in ovaries and pollen in stamens
- Flowering plants make fruits containing seeds which supply their embryo sporophytes with endosperm, a nutritive tissue – double fertilization!!!

Life Cycle: Lilium

C Brooks/Cole, Cengage Learning

Key Concepts Seed-Bearing Vascular Plants

- Gymnosperms and, later, angiosperms radiated into higher and drier environments
- Both produce pollen and seeds
- Nearly all crop plants are seed plants
- In angiosperms, flowers and fruits further enhanced reproductive success

Summary: Plant Evolutionary Trends

Bryophytes Seedless vascular plants Angiosperms Gymnosperms Nonvascular Vascular tissue present Vascular tissue present Vascular tissue present · Diploid dominance · Diploid dominance Haploid dominance Diploid dominance · Water required for · Water required for · Pollen grains; water not · Pollen grains; water not required for fertilization required for fertilization fertilization fertilization · "Naked" seeds · Seeds form inside an ovary Seedless Seedless that develops into a fruit whisk ferns. horsetails. gnetophytes, ginkgos, monocots, dicots, club mosses. conifers, cycads magnoliids, basal groups liverworts hornworts mosses spike mosses ferns ancestral alga @ Brooks/Cole, Cengage Learning