Welcome to B1010.01 &.02

Spring 2009

Instructor: Judy Cuff-Alvarado

- cuffjudy@deanza.edu
 - -Office: KC rm # 215 (408-864-8640)
- Lab: T OR Th: in S52 11:30-2:10
- Lecture: T & Th 9:30-11:10 in E35
- Greensheet Info/ Office Hrs/ http://faculty.deanza.fhda.edu/cuffjudy/
- Final Exam: 9:15 a.m.-11:15 a.m. Tuesday,
 June 23 in E35

GRADES

▶ 500 POINTS TOTAL FOR COURSE

Lab	100 pts
-----	---------

Articles	25 pts
----------	--------

- Final Exam (not cumulative) = 100 pts
- Homework/pop quizzes 25 pts
 - 500 points total

GRADE SCALE FOR THIS COURSE

• A+

A

A-

B+

В

B-

 $\mathsf{C}+$

C

D

F

95%

91-94%

89-91%

85-89%

82-84%

79-81%

71-78%

65-70%

55-64%

< 55%

>475

455-474.4

445-454.4

425-444.4

410-424.4

395-409.5

355-394.4

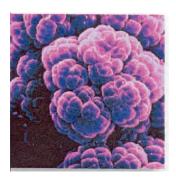
325-354.4

275-324.4

< 275

Extra Credit

- ▶ 40 pts total for the course
- Check Instructor's webpage
- Be careful of deadlines. NOT ACCEPTED AFTER DEADLINE!


WEEK #1 Homework

- Read Chapters 1 and 2 in text book.
- Sign onto Publisher's webpage for course support
- www.aris.mhhe.com

1.1 The Diversity of Life

- Biology: study of living things
- Living things can be divided into 6 kingdoms

Fig. 1.1

Archaea

Bacteria

Protista

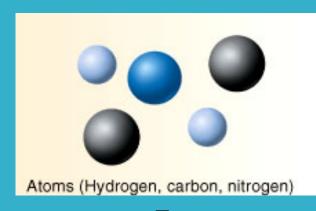
Plantae

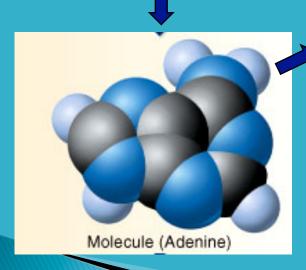
Animalia

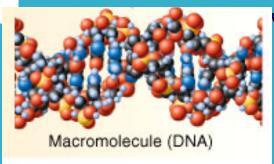
1.2 Properties of Life

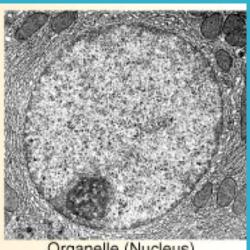
But what does it mean to be alive?

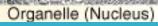
- Living organisms and many non-living things share three properties
 - Complexity
 - Movement
 - Response to stimulation

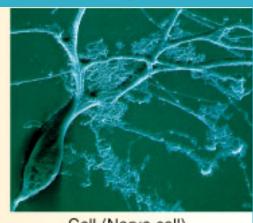

1.2 Properties of Life

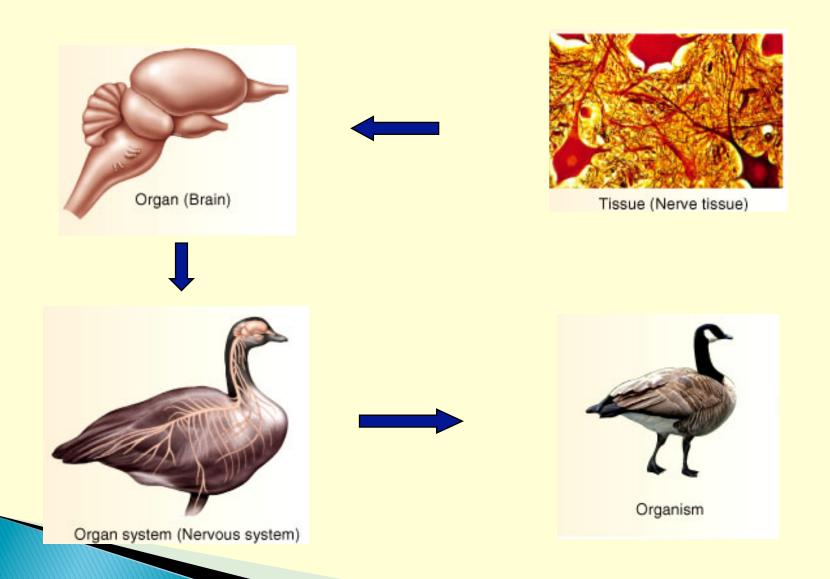

- All living organisms share 5 basic properties
 - 1. Cellular Organization: All are composed of at least one cell
 - 2. Metabolism: All use energy
 - 3. Homeostasis: All maintain stable internal conditions
 - 4. Growth and reproduction
 - 5. Heredity: All have a genetic system that is based on DNA (Deoxyribonucleic acid)


1.3 The Organization of Life

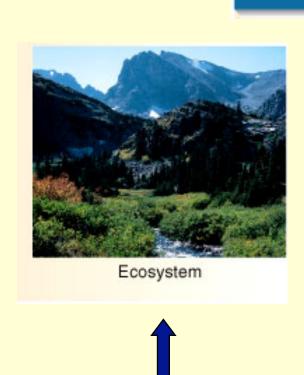

- Living organisms function and interact with each other at many levels
- These levels are organized in a hierarchy of increasing complexity
 - Cellular Level
 - Organismal Level
 - Populational Level


CELLULAR LEVEL





Cell (Nerve cell)


Fig. 1.4

ORGANISMAL LEVEL

Fig. 1.4

POPULATIONAL LEVEL

Population

Species

1.3 The Organization of Life

Each higher level contains novel properties not present at the simpler level of organization

 These properties are termed emergent properties

5 general themes unify and explain biology as a science

Refer to Table 1.1 in text

- Evolution
- Energy flow
- Structure determines function
- Cooperation
- homeostasis

1.4 Biological Themes

1. Evolution

- The genetic change in a species over time
- It is a result of a process termed natural selection
- Variation may also be caused by artificial selection

2. The Flow of Energy

- All living organisms require energy
- The sun is the source of energy for ecosystems
- Plants capture energy via photosynthesis
 - They then act as an energy source for other organisms

1.4 Biological Themes

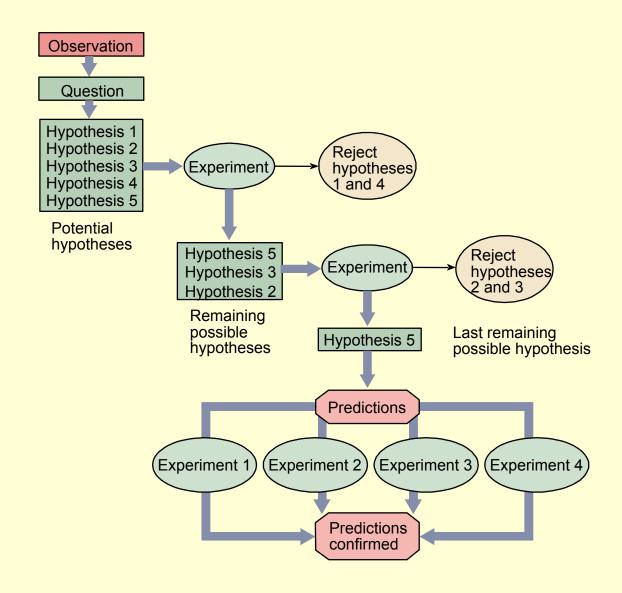
▶ 3. Cooperation

- Cooperation between organisms is critical for evolution
- Symbiosis occurs when two organisms of different species live in direct contact

4. Structure Determines Function

- Biological structures are well suited to their function
 - This is true at every level of organization

1.4 Biological Themes


- ▶ 5. Homeostasis
 - All living organisms act to maintain a relatively stable internal environment

 Maintaining homeostasis requires a lot of signaling back-and-forth between cells

1.7 6 Stages of Scientific Investigation

- -1. Observation
- -2. Hypothesis: a potentially falsifiable statement (Guess regarding the observation)
 - If more than 1 guess, alternative hypotheses
- -3. **Prediction**: Expected consequences
- -4. **Test**: experiment
- 5. Control: A factor that influences a process is called a variable
 - In a control experiment, all variables are held constant
- -6. conclusion: reject or accept hypothesis

Fig. 1.7

Facts, Hypotheses and Theories

- Observable, verifiable truths are facts
- Testable explanations for them are hypotheses
- And well, supported hypotheses are theories

1.8 Theory and Certainty

- Theory: a set of hypotheses that have been tested many times and not rejected
- It indicates a higher degree of certainty
- However, there is no absolute truth in science
 - So the acceptance of a theory is provisional

1.8 Theory and Certainty

Note:

- To scientists, a theory represents that of which they are most certain
- To the general public, a theory represents *lack* of knowledge or a guess

1.8 Theory and Certainty

- The scientific "method"
 - A series of logical "either/ or" predictions tested by experiments to reject alternative hypotheses

1.9 Four Theories Unify Biology

▶ 1. The Cell Theory

▶ 2. The Gene Theory

▶ 3. The Theory of Heredity

▶ 4. The Theory of Evolution

The Cell Theory: Organization of Life

- Robert Hooke, 1665
 - Discovered cells
- Anton van Leeuwenhoek, 1670s
 - Discovered single-celled life
- Matthias Schleiden & Theodor Schwann, 1839
 - All living organisms are composed of cells
 - Cells are the basic units of life
- Rudolf Virchow, 1866
 - All cells come from other cells

The Gene Theory: Molecular Basis of Inheritance

- The information that determines what an organism is like is encoded in its genes
- Genes are located along DNA molecules
 - Refer to Fig. 1.11
- The entire set of DNA instructions that specifies a cell is termed its genome

A human body contains over 100 different kinds of cells. Fig. 1.12 The gene theory Intestinal cell Macrophage Muscle cell Nerve cell Nucleus-All cells contain the same Chromosomes set of genes, but different kinds of cells use different genes. The production of specific A human cell has 46 proteins determines what the chromosomes, containing cell is like. some 3 billion nucleotides of DNA. Chromosome Gene A typical human chromosome contains about a thousand genes, Nucleotides arrayed along a linear piece of DNA. DNA double helix Each gene is composed of a sequence of several hundred to many thousands of DNA nucleotides and functions as a discrete unit of information.

The Theory of Heredity: Unity of Life

- This theory was first advanced by Gregor Mendel in 1865
 - genes of an organism are inherited as discrete units
- Later, other biologists proposed the chromosomal theory of inheritance
 - Genes are physically located on chromosomes

The Theory of Evolution: Diversity of Life

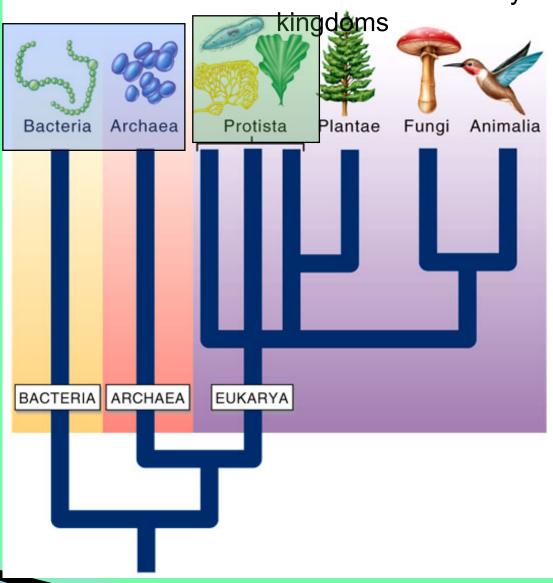
- This theory was first advanced by Charles Darwin in 1859
 - the diversity of the living world is due to natural selection
- "descent by modification"
 - All living organisms are related to one another in a common tree of life

Fig. 1.15 The tree of life

Crocodiles are more closely-related to birds than to other reptiles

The Theory of Evolution: Diversity of Life

Biologists divide all living organisms into domains


Prokaryotes and Bacteria ArchaeaAka Kingdom Monera


Eukaryotes
Plant
Animal
Fungi
Protista

Fig. 1.16

Simplest and most diverse; Gave rise to the other three eukaryotic

Prokaryotes

See you Thursday!

- Don't forget to sign onto publishers webpage.
- Read chapters 1 and 2.
- GO to instructors webpage and download Greensheet