- 5.1 Cells
 Cell theory
 1. All organi
 2. Cell are the
 - 1. All organisms are composed of one or more cells
 - 2. Cell are the smallest living things
 - 3. Cells arise only by division of previously existing cells
- 3 5.1 Cells

OCellular structure is organized

- plasma membrane forms the boundary of the cell
 Oalso controls the <u>permeability</u> of the cell to water and dissolved substances
- cytoplasm fills the interior of the cell
- 4 5.2 The Plasma Membrane

OA phospholipid has a polar head and two non-polar tails

Opolar region: phosphate chemical group and is water-soluble

Onon-polar region: fatty acids and is water-insoluble

5

Interior of lipid bilayer is NONPOLAR: no water soluble molecules can cross

- cholesterol is also found in the interior
 - Oaffects the fluid nature of the membrane
 - Oaccumulation in walls of bld vessels » plaques
 - Oplaques lead to cardiovascular disease
- 6 Plasma membrane proteins: embedded within the lipid bilayer
 - transmembrane proteins: form channels that span the membrane
 - •other proteins are integrated into the structure of the

membrane

Ole: cell surface proteins: attached to outer surface of the membrane/ act as markers

7 5.3 Prokaryotic Cells

- OThere are two major types of cells
 - •prokaryotic
 - Olacks a nucleus/ No extensive system of internal membranes
 - Oall bacteria and archea have this cell type
 - •eukaryotic
 - Ohas a nucleus and has internal membrane-bound compartments
 - Oall organisms other than bacteria or archae have this cell type

8 5.3 Prokaryotic Cells

Othe simplest cellular organisms

 have a plasma membrane surrounding a cytoplasm without interior compartments

Osome bacteria have additional outer layers to the plasma membrane

- cell wall comprised of carbohydrates to confer rigid structure
- capsule may surround the cell wall
- 9 Prokaryotic Interior: simple, uniform cytoplasm,

Oribosomes (protein synthesis) are scattered t/o the cytoplasm Onucleoid region (where DNA is localized)

- Oflagellum (plural, flagellae) is a collection of protein fibers that extends from the cell surface
 - aids in attaching to substrates and in exchanging genetic information between cells

Omay be one or many
Oaids in locomotion and feeding
Opilus (plural, pili) is a short flagellum

10 5.4 Eukaryotic Cells larger and more complex

Ohave a plasma membrane encasing a cytoplasm

- internal membranes form organelles
 Ocytoplasm is semi-fluid & has a network of protein fibers
 that form a scaffold called a cytoskeleton
- •Nucleus: a membrane-bound compartment for DNA
- endomembrane system: gives rise to the internal membranes found in the cell

Oeach compartment can provide specific conditions favoring a particular process

11 5.4 Eukaryotic Cells

Onot all eukaryotic cells are alike

- the cells of plants, fungi, and many protists have a cell wall beyond the plasma membrane
- all plants and many protists contain organelles called chloroplasts
- plants contain a central vacuole
- only animal cells contain centrioles
- 12 Animal versus Plant Cell
- 13 5.5 The Nucleus: The Cell's Control Center
 - O stores hereditary information
 - OThe nuclear surface is bounded by a double-membrane called the nuclear envelope
 - groups of proteins form openings called nuclear pores that permit proteins and RNA to pass in and out of the nucleus

14 Inside the nucleus

OChromosomes: Segments of DNA packaged w/ protein

- the proteins enable the DNA to be wound tightly so it appears condensed
 - the condensed or chromosome form of DNA occurs during cell division
 - OWhen cell is not dividing DNA is stored as chromatin (hard to see)

 protein synthesis occurs when the DNA is in the chromatin form

15 What else is in the nucleus?

Onucleus is the site for the subunits of the ribosome to be synthesized

- Nucleolus: dark-staining region of nucleus
 - Oit contains the genes that code for the rRNA (ribosomal RNA) that makes up the ribosomal subunits
 - Othe subunits leave the nucleus via the nuclear pores and the final ribosome is assembled in the cytoplasm
- 16 Figure 5.12 The nucleus
- 17 5.6 The Endomembrane System: an extensive system of internal membranes

 some of the membranes form channels and interconnections
 Oother portions become isolated spaces enclosed by membranes (vesicles)

18 5.6 The Endomembrane System

ORER: protein synthesis

- •the surface of this region looks pebbly
- •the rough spots are due to embedded ribosomes

OSER: carbohydrate & lipid synthesis

 the surface of this region looks smooth because it contains no embedded ribosomes

19 5.6 The Endomembrane System

OAfter synthesis in ER, the newly-made molecules are passed to Golgi bodies

- GB flattened membranes that form collective stacks called the Golgi complex
- •their numbers vary depending on the cell
- collect, package, and distribute molecules manufactured in the cell
- 20 5.6 The Endomembrane System
 - OThe ER and Golgi complex function together as a transport system in the cell
- 21 The Golgi complex also gives rise to

- Olysosomes
 - contain enzymes that the cell uses to break down macromolecules
 - Oworn-out cell parts are broken down & recycled to form new parts
 - Oparticles that the cell has ingested are also digested
- OPeroxisomes
 - •the chemical reactions in peroxisomes
 - 1.detoxify harmful byproducts of metabolism
 - 2.convert fats to carbohydrates in plants seeds for growth
- 22 5.7 Organelles That Contain DNA: nucleus, mitochondria, chloroplasts

23 The Theory of Endosymbiosis

- Osome organelles evolved from a symbiosis in which one cell of a prokaryotic species was engulfed by and lived inside of a cell of another species of prokaryote
 - the engulfed species provided their hosts with advantages because of special metabolic activities
 - the modern organelles of mitochondria and chloroplasts are believed to be found in the eukaryotic descendants of these endosymbiotic prokaryotes
- 24 Figure 5.18 Endosymbiosis
- 25 Evidence supporting endosymbiotic theory
 - •Mitochondria: ~same size as modern bacteria
 - the cristae in mitochondria resemble folded membranes in modern bacteria
 - mitochondrial ribosomes are similar to modern, bacterial ribosomes in size and structure
 - •mitochondria divide by fission, just like modern bacteria

26 5.8 The Cytoskeleton: Interior Framework of the Cell

- Ointernal framework of protein fibers that
 - anchor organelles to fixed locations
 - support the shape of the cell
 - helps organize ribosomes and enzymes needed for synthesis activities
- OThe cytoskeleton is dynamic and its components are continually being rearranged

27 Three different types of protein fibers comprise the cytoskeleton

- intermediate filaments
 - Othick ropes of intertwined protein
- microtubules
 - Ohollow tubes made up of the protein tubulin
- microfilaments
 - Olong, slender microfilaments made up of the protein actin

28 Centrioles are complex structures

- Oassemble microtubules in animal cells and the cells of most protists
- Oanchor organelles such as flagella/cilia
- Oassemble microtubules near nuclear envelope
- Othey might also have an endosymbiotic origin
- 29 5.8 The Cytoskeleton: Interior Framework of the Cell
 - OMicrotubules provide a means to transport material inside the cell efficiently over long distances
- 30 5.8 The Cytoskeleton: Interior Framework of the Cell
 - OThe cytoskeleton also anchors storage compartments
 - Vacuoles:membrane-bound storage centers
 - Ocentral vacuole: Irg space inside a plant cell filled w/ water/ dissolved substances
 - Ocontractile vacuole is found near the cell surface of some protists and accumulates excess water from inside the cell that it then pumps out

31 5.9 Outside the Plasma Membrane

- Cell walls
 - Ofound in plants, fungi, and many protists
 - Ocomprised of different components than prokaryotic cell walls
 - Oprovides protection, maintains cell shape, prevents excessive water loss/uptake

32 5.9 Outside the Plasma Membrane

- Extracellular matrix (ECM)
 - Ocomprised by a mixture of proteins secreted by cell
 - Ocollagen and elastin proteins form a protective layer over the cell surface
 - Ofibronectin protein connects the ECM to the plasma membrane
 - OECM influences cellular behavior and coordinates groups of cells functioning as tissues

33 Figure 5.25 The extracellular matrix

34 5.10 Diffusion and Osmosis

- Movement of water and nutrients into a cell or elimination of wastes out of cell is is essential for survival
- This movement occurs across a biological membrane in one of three ways
 - diffusion
 - membrane folding
 - protein transport

35 5.10 Diffusion

OThe net movement of molecules from an area of higher

concentration to an area of lower concentration is termed diffusion

- OMolecules diffuse down a concentration gradient from higher to lower concentrations
 - •diffusion ends when equilibrium is reached

36 5.10 Diffusion

- OOnly certain substances undergo diffusion across the plasma membrane
 - •le: oxygen, carbon dioxide, and nonpolar lipids
 - ions and polar molecules cannot cross the interior of the membrane
- OWater, although polar, is able to diffuse freely across the plasma membrane
- •aquaporins are selective channels that permit water to cross

37 **5.10 Osmosis**

- O<u>Water</u> moves down its concentration gradient moving into/out of a cell
- Othe movement of water is dependent on the concentration of other substances in a solution
 - the greater the amount of solutes that are dissolved in a solution, then the lesser the amount of water molecules that are free to move

38 5.10 Diffusion and Osmosis

- OThe concentration of all molecules dissolved in a solution is called the osmotic concentration of the solution
- OOsmotic concentrations of different solutions can be compared relative to each other

39 **5.10 Osmosis**

- OConsider two solutions with unequal osmotic concentrations
- Othe solution with the higher concentration is called hypertonic
- OThe solution with the lower concentration is called hypotonic 40 5.10 Osmosis

OConsider two solutions with equal osmotic concentrations
OThe solutions are each called isotonic 41 5.10 Osmosis
OMovement of water by osmosis into a cell causes pressure called osmotic pressure
●Too much: may cause a cell to swell and burst
•explains why so many cell types are reinforced by cell walls
42 5.11 Bulk Passage into and out of Cells
OBulky substances are contained within vesicles as they are moved into and out of a cell
●Endocytosis: transport into the cell
OPhagocytosis:
OPinocytosis:
ORME:
●Exocytosis: transport out of the cell
43 Figure 5.29(a) Exocytosis
44 Receptor Mediated Endocytosis: transport of specific
molecules INTO
molecules bind to specific receptors in plasma membrane. A portion of the receptor extends into the membrane in an
molecules bind to specific receptors in plasma membrane. A
molecules bind to specific receptors in plasma membrane. A portion of the receptor extends into the membrane in an indented pit coated with protein clathrin when a molecule binds to its specific receptor, the cell reacts immediately by initiating endocytosis of a now clathrin-coated vesicle
molecules bind to specific receptors in plasma membrane. A portion of the receptor extends into the membrane in an indented pit coated with protein clathrin when a molecule binds to its specific receptor, the cell reacts immediately by initiating endocytosis of a now clathrin-coated vesicle
molecules bind to specific receptors in plasma membrane. A portion of the receptor extends into the membrane in an indented pit coated with protein clathrin when a molecule binds to its specific receptor, the cell reacts immediately by initiating endocytosis of a now clathrin-coated vesicle 5.12 Selective Permeability OSelective permeability allows cells to control specifically what
molecules bind to specific receptors in plasma membrane. A portion of the receptor extends into the membrane in an indented pit coated with protein clathrin when a molecule binds to its specific receptor, the cell reacts immediately by initiating endocytosis of a now clathrin-coated vesicle 5.12 Selective Permeability Oselective permeability allows cells to control specifically what enters and leaves
molecules bind to specific receptors in plasma membrane. A portion of the receptor extends into the membrane in an indented pit coated with protein clathrin when a molecule binds to its specific receptor, the cell reacts immediately by initiating endocytosis of a now clathrin-coated vesicle 5.12 Selective Permeability Oselective permeability allows cells to control specifically what enters and leaves oinvolves using proteins in the membrane for transporting
molecules bind to specific receptors in plasma membrane. A portion of the receptor extends into the membrane in an indented pit coated with protein clathrin when a molecule binds to its specific receptor, the cell reacts immediately by initiating endocytosis of a now clathrin-coated vesicle 5.12 Selective Permeability Oselective permeability allows cells to control specifically what enters and leaves involves using proteins in the membrane for transporting substances across
molecules bind to specific receptors in plasma membrane. A portion of the receptor extends into the membrane in an indented pit coated with protein clathrin when a molecule binds to its specific receptor, the cell reacts immediately by initiating endocytosis of a now clathrin-coated vesicle 5.12 Selective Permeability Oselective permeability allows cells to control specifically what enters and leaves involves using proteins in the membrane for transporting substances across 5.12 Selective Permeability

- Facilitated diffusion
 - Oproteins act as carriers that can bind only to specific molecules to transport
 - Otransport is limited by the availability of carriers
 - O if there are not enough carriers, then the transport is saturated

47 Active transport

- •utilizes protein channels that open <u>only</u> when energy is supplied
- pump substances against or up their concentration gradients
- allows cells to maintain high or low concentration of certain molecules
 - diffusion always ends in equilibrium
- OThere are two kinds of channels that perform active transport in cells
 - sodium-potassium pump
 - proton pump

Sodium-potassium (Na⁺-K⁺) pump

- uses energy, in the form of ATP, to pump three Na⁺ out of the cell and to pump two K⁺ into the cell
- nearly 1/3 of the energy expended by the body's cells is given over to driving these pumps
- Figure 5.32 How the sodium-potassium pump works
 Summary of Transport Mechanisms

http://www2.visalia.k12.ca.us/eldiamante/science/biology/taters/cell_membrane_mc.htm

- 1 OPASSIVE
 - No energy
 - Down a gradient
 - Diffusion
 - Osmosis

- Facilitated Diffusion
- ² OACTIVE
 - Requires energy
 - ●UP a gradient
 - ●Uses up to 40% of a cells ATP
 - ●Na-K pump
 - Endocytosis
 - Exocytosis
 - Proton pump

51