HOMEWORK #16 – SOLUTIONS

Page 712

4) Russia. 0.4% per year.

6)
\[1416 = 1049.7e^{0.015t} \Rightarrow 1.34895 = e^{0.015t} \Rightarrow \]
\[\ln(1.34895) = 0.015t \Rightarrow t \approx 20 \text{ years} \Rightarrow 2023 \]

10)
\[A = 16e^{-0.000121(11430)} = 4 \text{ grams} \]

12) 25,000 years -> 8 grams
 50,000 years -> 4 grams
 75,000 years -> 2 grams
 100,000 years -> 1 gram
 125,000 years -> 0.5 grams

14)
\[A = A_0e^{-0.000121t} \]
\[\frac{A}{A_0} = 0.88 \]
\[0.88 = e^{-0.000121t} \Rightarrow \ln(0.88) = -0.000121t \Rightarrow \]
\[t = 1,056 \text{ years old in 1989} \]

24) logarithmic

28)
\[y = 1000(7.3)^x \Rightarrow y = 1000e^{(\ln7.3)x} = 1000^{1.988x} \]

42)
\[y = ax^b \quad a = 196.619, \quad b = 0.094 \]
\[y = 196.619x^{0.094}, \quad r = 0.903 \]

44) a)
linear regression:
\[y = 0.5055x - 8.59, \quad r = 0.945 \]

logarithmic regression:
\[y = -20.94 + 12.53 \ln x, \quad r = 0.674 \]

exponential regression:
\[y = 3.38 (1.024)^x, \quad r = 0.995 \]

power regression:
\[y = 1.187x^{0.701}, \quad r = 0.864 \]

The exponential model is the best based on \(r \).

b)
\[y = 3.38 (1.024)^x \Rightarrow y = 3.38 e^{(\ln 1.024)x} = 3.38^{0.024x} \]

The population is increasing by 2.4% each year.