

Size & Environment Matter!

Conduction & Convection in Aquatic vs. Terrestrial -

- Water absorbs heat energy 50–100x faster than does air! Marine iguanas of the Galapagos
- Juveniles & adult females feed on exposed intertidal alga
- Only large males have sufficient body mass to generate enough heat to forage underwater

Poikilotherms — toleration \neq thriving

Even if can survive $\boldsymbol{\Delta}$ temps, do best in a small range

- ↑↑T_B→↑stress & mortality
- $\downarrow \downarrow T_B \rightarrow \downarrow$ metabolic rate & activity
- Lizards
 - 1 discrimination in T-maze tests
 - A behavior: warm lizards flee: cool lizards threaten

Western fence lizard

- Regains activity within hours of thawing

A frozen arctic wood toad

Homeotherms

- Behavioral homeothermy
- Physiological homeothermy
- Anatomical homeothermy
- Part-time homeothermy
- (combinations of any/all of the above)

Behavioral Homeothermy

- Live in a stable environment
 or
- · Move with the constant conditions

Behavioral Homeothermy

 Seek shade/wet to cool off

 Kangaroos lick their legs. Camels pee on them
 Orient hadu to minimize radie

Behavioral Homeothermy

- · Seek sun/dry to warm up (basking)
- Orient body to maximize radiation

Japanese macaque sitting in a hot spring

Dynamic Constancy

- Fluctuate around set point.

- Set point may be reset for new situations.
- ↓T_B at times of low activity (sleep)
- † T_B to fight infection (fever)

Part-time Homeothermy

Using physiological homeothermy only under certain conditions
Arabian oryx — when water is available

Endotherr Ectothe	mic-Homeoth ermic-Poikilot	erms vs. herms
	Endothermic-	Ectothermic-
	Homeotherms	Poikilotherms
Advantages	Activity level independent of environmental temp	Low food energy demands
Disadvantages	High food energy demands	Activity level dependent on environmental temp
Selection	Favored in high nutrient environments	Favored in low nutrient environments

