Patterns of InheritanceMendelian Genetics

Heredity

Passing on a physical characteristic to future generations

- Eye color, ear shape, diseases, feather color

- Some things you probably already know about heredity
 - Children resemble their parents.
- Children are *not* identical to their parents.

Some things you already know about genes

- * Genes are carried on chromosomes.
- Most eukaryotes are diploid. (have 2 copies of each chromosome).
- Genes are sequences of DNA that code for proteins (or at least for RNA).
- Mutations happen.
- There is variation in populations.
- Sex makes new combinations of variations.

Relationship between alleles of the same gene

- Dominant: the allele that is expressed in a heterozygote (produces physical appearance)
- Recessive: the allele that is <u>masked</u> in a heterozygote

Genotype: genes carried on chromosomes

- Genotype: genetic make-up
 - Designated by letters
 - Dominant gene in upper case letters
 - -Recessive gene in lower case letters
 - AA = homozygous dominant
 Aa = heterozygous
 - **aa** = homozygous recessive
- pe:

 Phenotype: physical manifestation of genotype

 Brown eyes or blue eyes

Gregor Mendel was the first to study genetics experimentally

- Used pea plants as a model system
- Developed two major genetic principles
 - Principle of Segregation
 - Principle of Independent Assortment

Artificial fertilization

- Two plants that are mated are called a cross
- Resulting peas are seeds (embryos) that will mature into the next generation

Remover stamens purple file	from ower
Carpel Parents (P)	Stamens Transferred pollen from Stamens of white flower to carpel of purple flower Purple flower Purple difference of purple flower matured into pod
Offspring (F ₁)	Planted seeds from pod

Mendel used <u>monohybrid</u> <u>crosses</u> to study single traits

- Used pure breeding plants
 - -Plant is homozygous for <u>all</u> genes
- Mated two individuals that differ by only <u>one</u> trait
 - -E.g, purple flowers vs. white flowers

Offspring will have a phenotypic ratio of 3 to 1 only if paired alleles assort randomly

Fertilization is random

- Either A or a from one parent can be fertilized by A or a from other parent
- Can use a <u>Punnett square</u> to predict possible genotypes of offspring

Mendel's Principle of Segregation

- Pairs of genes separate during gamete formation
 - Each gamete carries only one allele for each gene (haploid)
- Pairs of genes reform when gametes fuse during fertilization

Are all the traits inherited from one parent passed on together to subsequent generations as a set?

- Dihybrid cross: Tracking two characteristics at once
- Parental organisms differ in two characteristics
 - For example,
 I Seed shape: round vs. wrinkled and
 - Seed color: yellow vs. green

Mendel's Principle of Independent Assortment Each different trait segregates independently during gamete formation

-Seed shape and seed color are inherited separately from each other

Understanding meiosis is key to understanding genetics

- Meiosis produces haploid gametes
- Paired alleles segregate (separate) during meiosis
- Knowing genotype of gamete allows prediction of phenotype and genotype of offspring

Simple dominance

Heterozygote (Aa) has the same phenotype as homozygous dominant (AA)

Mendel's questions

How can a trait "skip" a generation? (In other words, how can a trait be recessive?)

How can an allele be recessive?

- **w** Alleles at the same locus are expressed independently of each other.
- **w** An allele doesn't know if its homolog is dominant or recessive.

How can an allele be recessive?

- why does white show up only when it's homozygous?
- Maybe white allele is a loss-of-function mutation: no pigment is created.
- could code for non-functional protein, or not code for a protein at all.

How can an allele be recessive?

- **^π** If there's no functional pigment allele, flower will be white.
- **π** If there's a functional pigment allele, cells will keep making pigment protein until there's enough.
- Dosage compensation: it doesn't matter how many copies of an allele are present.

Mendelian vs. chromosomal inheritance

Independent assortment of chromosomes explains independent assortment of genes on separate chromosomes

But ...

- Each chromosomes has several hundred gene loci!
- So, how do you get independent assortment of genes occurring on the *same* chromosome?
- Sometimes you do, sometimes you don't! – "linked genes"

- Environmentally-restricted
 - expression

igure 14.11

