Cellular Respiration & Metabolism

Bioenergetics

- Flow of energy in living systems obeys:
- 1st law of thermodynamics:
 - Energy can be transformed, but it cannot be created or destroyed.
- 2nd law of thermodynamics:
 - Energy transformations increase entropy (degree of disorganization of a system).
 - Only free energy (energy in organized state) can be used to do work.
 - Systems tend to go from states of higher free energy to states of lower free energy.

Coupled Reactions: Bioenergetics

- Energy transfer from one molecule to another couples chemical reactions
- Exergonic reaction: reaction releases energy
- Endergonic reaction: reaction requires energy
- **Coupled bioenergetic reactions**: the energy released by the exergonic reaction is used to power the endergonic reaction.

Coupled Pathways: Bioenergetics

- Energy transfer from one metabolic pathway to another by means of ATP.
- Catabolic pathway (catabolism): breaking down of macromolecules. Releases energy which may be used to produce ATP.
- Anabolic pathway (anabolism): building up of macromolecules. Requires energy from ATP.
- **Metabolism**: the balance of catabolism and anabolism in the body.

Cellular **Respiration**: ATP is the cell's rechargable battery

- Breaking down complex glucose molecule releases energy.
- That energy is used to convert ADP into ATP.

ADP + P + *energy* - > ATP

• Energy is released as ATP breaks down into ADP and AMP.

ATP -> energy + ADP + P

- NAD⁺ (nicotinamide adenine dinucleotide)

 {Derived from vitamin B₃: niacin}
 NAD⁺ + H⁺ + 2e⁻ ⇔ NADH
- FADH⁺ (flavin adenine dinucleotide)

 {Derived from vitamin B₂: riboflavin}
 FADH⁺ + H⁺ + 2e⁻ ⇔ FADH₂

• Reminder: Hydrogen = H⁺ + e⁻

Cellular Respiration

- Controlled oxidation of organic fuel (exergonic)
 –coupled with
- Phosphorylation of **ADP to ATP** (endergonic)

Respiration

- Respiration is a redox process.
- Respiration uses a proton gradient to power ATP synthesis.
- An electron transport chain links the oxidation of food molecules to the production of the proton gradient.

Respiration mechanisms * Harvesting electrons from food: glycolysis & the Krebs cycle. * Making a proton gradient: electron transport chain. * Using the proton gradient to power ATP synthesis: chemiosmosis & oxidative phosphorylation.

