

On the Origin of Species... WHAT IS A SPECIES?

- Individuals in one or more populations
- Potential to interbreed
- Produce fertile offspring

Genetic variation: how do new forms arise?
• Chromosomal mutations of base sequences.
A B C D E F G H Duplication A B C B C D E F G H
ABCDEFGH Inversion
M N O P Q R 4.12

A population in Hardy-Weinberg equilibrium

• If *p* and *q* represent the relative frequencies of the only two possible alleles in a population at a particular locus, then

$$p^2 + 2pq + q^2 = 1$$

- p^2 = frequency of the genotype homozygous for the first allele
- *q*² = frequency of the genotype homozygous for the first allele
- 2*pq* = frequency of the heterozygous genotype

BIOLOGICAL EVOLUTION

- Change in a population's gene pool over time as a result of a **change** in frequency of an allele
- But according to Hardy-Weinburg Equilibrium: <u>if</u> mating is random, the frequency of alleles in a population remains **constant** over time.
- Therefore, population evolution is a product of **non-random mating**.

A population in Hardy-Weinberg equilibrium

- The five conditions for **Hardy-Weinberg equilibrium**: ✓ Large population size
 - \checkmark No significant gene flow
 - \checkmark Mutation rate is trivial compared to recombination
 - ✓ Random mating
 - ✓ No significant natural selection
- If any/several of these conditions are not met, changes in allele frequency may occur
 - \succ non-equilibrium = evolution

BIOLOGICAL EVOLUTION

Remember! -

- Natural selection works on phenotype
 - But only genotype is inherited
- Natural selection works on individuals
 - But only populations evolve

EVOLUTION OF POPULATIONS

- Genetics & Variability
- Non-Adaptive Evolution
- Fitness & Natural Selection
- Sexual Selection

Non-Adaptive Evolution: Most Likely in Small Populations

- Genetic Drift
- Genetic Bottleneck
- Founder Effect
- Gene Flow
- Assortative Mating

Non-Adaptive Evolution

- Genetic Drift
- Genetic Bottleneck
- Founder Effect
- Gene Flow
- Assortative Mating

EVOLUTION OF POPULATIONS

- Genetics & Variability
- Non-Adaptive Evolution
- Fitness & Natural Selection - Modes of Selection
- Sexual Selection

Terms used in Natural Selection

- **Fitness**: measure of how many genes you pass on to future generations.
- Differential representation of genes in future generations due to differential survival to reproductive maturity.
 - Requires heritable (genetic) variation among individuals.
- If differential survival is based upon **expressed** genotypic differences
 - it **may** lead to changes in population gene frequency.

Heterozygote Advantage: Malaria and Sickle Cell Anemia Image: Colspan="2">Image: Colspan="2" Image: Colspan

Modes of Selection

- Fitness and Selection
- Stabilizing Selection
- Directional Selection
- Diversifying Selection

Directional Selection: The Pepper Moth *Biston betularia*

n-free, soot-covered trunk

Industrial melanism in early 1900's

MALARIA TODAYMALARImage: Mostly under
control in 1947Image: Common today in
tropical countriesImage: Common today in
tropical countriesImage: Mostly childrenImage: Common today in
tropical countriesImage: Common today in
tropical countriesImage: Mostly childrenImage: Common today in
tropical countri

Modes of Selection

- Fitness and Selection
- Stabilizing Selection
- Directional Selection
- Diversifying Selection
 a.k.a. disruptive selection

Diversifying Selection: African Seedcrackers

These birds feed on seeds of two sedge species.

EVOLUTION OF POPULATIONS

- Genetics & Variability
- Non-Adaptive Evolution
- Adaptive Evolution: Natural Selection
 Modes of Selection
- Sexual Selection

Sexual Selection

- Natural Selection (NS): differential reproduction due to differential survival.
- Sexual Selection (SS): differential reproduction due to *increased* Reproductive Success (RS) despite possible *decreased* survival.

