Instructor: Professor Neena Kaushik

Office hours (in AT 203): Mondays: 3:15 to 4:15 p.m.
 Wednesdays: 10 to 11 a.m.
 and by appointment

Email: kaushikneena@fhda.edu

Course website: http://www.deanza.edu/faculty/kaushikneena

Lecture: 12:30 - 2:10 p.m. in AT 312(1:30 – 1:35 p.m. break) (Mondays & Wednesdays)

Lab: 2:15 - 2:40 p.m. in AT 312 (Mondays & Wednesdays)

Assignment due date: October 29

<table>
<thead>
<tr>
<th>Part</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program works correctly</td>
<td>25</td>
</tr>
<tr>
<td>Output with three test cases</td>
<td>25</td>
</tr>
<tr>
<td>Comments and variable names properly used</td>
<td>20</td>
</tr>
<tr>
<td>Header</td>
<td>20</td>
</tr>
<tr>
<td>Program and output sheets are stapled properly</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

1) Please submit your program in hard copy along with the output
2) Please use comments in your program. Please name the variables so that they indicate what the variable does in the program. A maximum of 20 points will be deducted if variable names and comments are not used properly.
3) Please include the following header in your program. A maximum 20 points will be deducted for the header not being present in the program.

/***
** Program written by: Your name
** Inputs: List the inputs to the program
** Outputs: List the outputs from the program
** What the program does: Say what the program does
***/
ASSIGNMENT 5

Write a C program which uses the round function. It should take a double precision number as input and return a double precision number. The program should output the rounded number as a double precision number.

1) You have to declare and define the round function

“From linux programmers manual”

NAME
round - round to nearest integer, away from zero

SYNOPSIS:

DESCRIPTION
These functions round x to the nearest integer, but round halfway cases away from zero (regardless of the current rounding direction).

RETURN VALUE
The rounded integer value. If x is integral or infinite, x itself is returned.

EXAMPLES:

1)

 INPUT
 1.0

 OUTPUT
 1.0

2)
INPUT
1.5
OUTPUT
2.0

3)
INPUT
2.5
OUTPUT
3.0