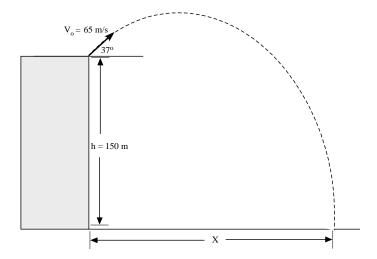

DO NOT TURN THIS PAGE!!!!!

Name:		
	Physics 2A Winter 2010	
	Exam 1	


MAKE SURE TO SHOW ALL WORK IN COMPLETE DETAIL. NO CREDIT WILL BE GIVEN IF NO WORK IS SHOWN. EXPRESS ALL ANSWERS IN SI UNITS.

- 1. At a construction site a pipe wrench fell from rest and struck the ground with a speed of 30 m/s. (10 pts)
 - a) Calculate the height it was dropped from.
 b) Calculate how long it was falling.
 c) Draw the graph of a vs t, v vs. t, and y vs. t.

- 2. In the figure below, a radar station detects an airplane approaching directly from the east. At first observation, the plane is at $d_1 = 370$ m from the station and at $\theta_1 = 40^\circ$ above the horizontal. The airplane is tracked through an angular change $\Delta\theta = 130^\circ$; its distance is then $d_2 = 780$ m. (10 pts)
 - a) Sketch the displacement vector of the plane in the figure below.
 - b) Find the displacement of the plane during this time in unit-vector notation.
 - c) Calculate the magnitude and direction of the displacement vector.

3. A projectile is thrown from the edge of a building with an initial speed of 65.0 m/s at an angle of 37° with the horizontal. The height of the building is 150 m. See figure below. (10 pts)

- a) Calculate the time for the projectile to strike the ground.b) Calculate the range X of the projectile.

- 4. A clock has a second hand of length 20 cm. From the 12 P.M mark to the 9 P.M mark, for the tip of the second hand, :
 - a) Calculate the displacement vector in unit-vector notation.
 - b) Calculate the average velocity vector in unit-vector notation.
 - c) Calculate the period of rotation.
 - d) Calculate the speed.
 - e) Calculate the instantaneous acceleration vector in unit-vector notation as it passes through the 6 P.M mark.
 - f) Calculate the average acceleration vector in unit-vector notation.